ChatGPT解决这个技术问题 Extra ChatGPT

LEFT OUTER JOIN in LINQ

How to perform left outer join in C# LINQ to objects without using join-on-equals-into clauses? Is there any way to do that with where clause? Correct problem: For inner join is easy and I have a solution like this

List<JoinPair> innerFinal = (from l in lefts from r in rights where l.Key == r.Key
                             select new JoinPair { LeftId = l.Id, RightId = r.Id})

but for left outer join I need a solution. Mine is something like this but it's not working

List< JoinPair> leftFinal = (from l in lefts from r in rights
                             select new JoinPair { 
                                            LeftId = l.Id, 
                                            RightId = ((l.Key==r.Key) ? r.Id : 0
                                        })

where JoinPair is a class:

public class JoinPair { long leftId; long rightId; }
can you give an example of what you're trying to achieve?
normal left outer join is something like this: var a = from b in bb join c in cc on b.bbbbb equals c.ccccc into dd from d in dd.DefaultIfEmpty() select b.sss; Mine question is there any way to do that witouth using join-on-equals-into clauses something like this var a = from b in bb from c in cc where b.bbb == c.cccc ... and so on...
sure there is, but you should post an example of your code you already have so people can give you a better answer
I was looking for a "Left excluding" JOIN (and I confused it with the concept of "OUTER"). This answer was closer to what I wanted.

I
Ian Kemp

As stated in "Perform left outer joins":

var q =
    from c in categories
    join p in products on c.Category equals p.Category into ps
    from p in ps.DefaultIfEmpty()
    select new { Category = c, ProductName = p == null ? "(No products)" : p.ProductName };

I'm trying the same thing but getting an error on the join operator, which says "The type of one of the expressions in the join clause is incorrect."
@jain if your types are different the join will not work. So likely your keys are of different datatypes. Are both keys int for example?
Whats the solution Jain? I am also facing the same error and the types are same in my case as well.
now we can use null coalescing like select new { Category = c, ProductName = p.ProductName ?? "(No products)" };
What is the equivalent in Linq with lambda?
j
jpmc26

If a database driven LINQ provider is used, a significantly more readable left outer join can be written as such:

from maintable in Repo.T_Whatever 
from xxx in Repo.T_ANY_TABLE.Where(join condition).DefaultIfEmpty()

If you omit the DefaultIfEmpty() you will have an inner join.

Take the accepted answer:

  from c in categories
    join p in products on c equals p.Category into ps
    from p in ps.DefaultIfEmpty()

This syntax is very confusing, and it's not clear how it works when you want to left join MULTIPLE tables.

Note
It should be noted that from alias in Repo.whatever.Where(condition).DefaultIfEmpty() is the same as an outer-apply/left-join-lateral, which any (decent) database-optimizer is perfectly capable of translating into a left join, as long as you don't introduce per-row-values (aka an actual outer apply). Don't do this in Linq-2-Objects (because there's no DB-optimizer when you use Linq-to-Objects).

Detailed Example

var query2 = (
    from users in Repo.T_User
    from mappings in Repo.T_User_Group
         .Where(mapping => mapping.USRGRP_USR == users.USR_ID)
         .DefaultIfEmpty() // <== makes join left join
    from groups in Repo.T_Group
         .Where(gruppe => gruppe.GRP_ID == mappings.USRGRP_GRP)
         .DefaultIfEmpty() // <== makes join left join

    // where users.USR_Name.Contains(keyword)
    // || mappings.USRGRP_USR.Equals(666)  
    // || mappings.USRGRP_USR == 666 
    // || groups.Name.Contains(keyword)

    select new
    {
         UserId = users.USR_ID
        ,UserName = users.USR_User
        ,UserGroupId = groups.ID
        ,GroupName = groups.Name
    }

);


var xy = (query2).ToList();

When used with LINQ 2 SQL it will translate nicely to the following very legible SQL query:

SELECT 
     users.USR_ID AS UserId 
    ,users.USR_User AS UserName 
    ,groups.ID AS UserGroupId 
    ,groups.Name AS GroupName 
FROM T_User AS users

LEFT JOIN T_User_Group AS mappings
   ON mappings.USRGRP_USR = users.USR_ID

LEFT JOIN T_Group AS groups
    ON groups.GRP_ID == mappings.USRGRP_GRP

Edit:

See also " Convert SQL Server query to Linq query " for a more complex example.

Also, If you're doing it in Linq-2-Objects (instead of Linq-2-SQL), you should do it the old-fashioned way (because LINQ to SQL translates this correctly to join operations, but over objects this method forces a full scan, and doesn't take advantage of index searches, whyever...):

    var query2 = (
    from users in Repo.T_Benutzer
    join mappings in Repo.T_Benutzer_Benutzergruppen on mappings.BEBG_BE equals users.BE_ID into tmpMapp
    join groups in Repo.T_Benutzergruppen on groups.ID equals mappings.BEBG_BG into tmpGroups
    from mappings in tmpMapp.DefaultIfEmpty()
    from groups in tmpGroups.DefaultIfEmpty()
    select new
    {
         UserId = users.BE_ID
        ,UserName = users.BE_User
        ,UserGroupId = mappings.BEBG_BG
        ,GroupName = groups.Name
    }

);

This answer is actually helpful. Thank you for actually offering syntax that is understandable.
WTB a NHibernate compatible LINQ query... :)
LINQ to SQL translates this correctly to join operations. Over objects however this method forces a full scan, This is why the official documentation offers the group join solution that can take advantage of hashes to index searches.
I think the syntax of explicit join is much more readable and clear than a where followed by DefaultIfEmpty
@user3441905: As long as you just have to join table a with table b, this may be. But as soon as you have more than that, it will not be. But even for only 2 table, I think it's overly verbous. Popular opinion also seems to be against you, as this answer started with 0 when the top answer already had 90+ upvotes.
F
Fereydoon Barikzehy

Using lambda expression

db.Categories    
  .GroupJoin(db.Products,
      Category => Category.CategoryId,
      Product => Product.CategoryId,
      (x, y) => new { Category = x, Products = y })
  .SelectMany(
      xy => xy.Products.DefaultIfEmpty(),
      (x, y) => new { Category = x.Category, Product = y })
  .Select(s => new
  {
      CategoryName = s.Category.Name,     
      ProductName = s.Product.Name   
  });

Both Join and GroupJoin don't really support left-join. The trick with using GroupJoin is that you can have empty groups and then translate those empty groups into empty values. DefaultIfEmpty simply does that, meaning Enumerable.Empty<Product>.DefaultIfEmpty() will return an IEnumerable with a single value of default(Product).
All this to perform a left join??
Thanks for this! Not too many lambda expression examples out there, this worked for me.
Thanks for the answer. It yielded the closest thing to the raw SQL LEFT OUTER JOIN I've written over the years
Don't really need the last Select(), the anon obj in the SelectMany() can be refactored for the same output. Another thought is to test y for null to simulate a closer LEFT JOIN equivalence.
M
Matas Vaitkevicius

Now as an extension method:

public static class LinqExt
{
    public static IEnumerable<TResult> LeftOuterJoin<TLeft, TRight, TKey, TResult>(this IEnumerable<TLeft> left, IEnumerable<TRight> right, Func<TLeft, TKey> leftKey, Func<TRight, TKey> rightKey,
        Func<TLeft, TRight, TResult> result)
    {
        return left.GroupJoin(right, leftKey, rightKey, (l, r) => new { l, r })
             .SelectMany(
                 o => o.r.DefaultIfEmpty(),
                 (l, r) => new { lft= l.l, rght = r })
             .Select(o => result.Invoke(o.lft, o.rght));
    }
}

Use like you would normally use join:

var contents = list.LeftOuterJoin(list2, 
             l => l.country, 
             r => r.name,
            (l, r) => new { count = l.Count(), l.country, l.reason, r.people })

Hope this saves you some time.


This is nice, but in your example, won't r.people throw an exception if list contains keys list2 doesn't because r will be null? Shouldn't it be r?.people? Otherwise, it's just an inner join that also throws exceptions. Or, I think you could add a "default right element" parameter to LeftOuterJoin() and pass it into DefaultIfEmpty().
Shouldn't this be for IQueryable instead?
N
Nielsvh

Take a look at this example. This query should work:

var leftFinal = from left in lefts
                join right in rights on left equals right.Left into leftRights
                from leftRight in leftRights.DefaultIfEmpty()
                select new { LeftId = left.Id, RightId = left.Key==leftRight.Key ? leftRight.Id : 0 };

Can r be accessed in the select clause after using a join into?
@FarhadAlizadehNoori Yes It can.
Author probably meant to re-use r in the second from clause. i.e. from r in lrs.DefaultIfEmpty() Otherwise this query doesn't make much sense and probably doesn't even compile due to r being out of context for the select.
@Devart, when I read your query it reminded me of movie Clockwise with John Cleese, lol.
From left into right into leftrights in rights on left in leftRights... Oh jeez... The syntax of using LEFT OUTER JOIN in LINQ really isn't clear, but these names really make it even more unclear.
q
quadroid

An implementation of left outer join by extension methods could look like

public static IEnumerable<Result> LeftJoin<TOuter, TInner, TKey, Result>(
  this IEnumerable<TOuter> outer, IEnumerable<TInner> inner
  , Func<TOuter, TKey> outerKeySelector, Func<TInner, TKey> innerKeySelector
  , Func<TOuter, TInner, Result> resultSelector, IEqualityComparer<TKey> comparer)
  {
    if (outer == null)
      throw new ArgumentException("outer");

    if (inner == null)
      throw new ArgumentException("inner");

    if (outerKeySelector == null)
      throw new ArgumentException("outerKeySelector");

    if (innerKeySelector == null)
      throw new ArgumentException("innerKeySelector");

    if (resultSelector == null)
      throw new ArgumentException("resultSelector");

    return LeftJoinImpl(outer, inner, outerKeySelector, innerKeySelector, resultSelector, comparer ?? EqualityComparer<TKey>.Default);
  }

  static IEnumerable<Result> LeftJoinImpl<TOuter, TInner, TKey, Result>(
      IEnumerable<TOuter> outer, IEnumerable<TInner> inner
      , Func<TOuter, TKey> outerKeySelector, Func<TInner, TKey> innerKeySelector
      , Func<TOuter, TInner, Result> resultSelector, IEqualityComparer<TKey> comparer)
  {
    var innerLookup = inner.ToLookup(innerKeySelector, comparer);

    foreach (var outerElment in outer)
    {
      var outerKey = outerKeySelector(outerElment);
      var innerElements = innerLookup[outerKey];

      if (innerElements.Any())
        foreach (var innerElement in innerElements)
          yield return resultSelector(outerElment, innerElement);
      else
        yield return resultSelector(outerElment, default(TInner));
     }
   }

The resultselector then has to take care of the null elements. Fx.

   static void Main(string[] args)
   {
     var inner = new[] { Tuple.Create(1, "1"), Tuple.Create(2, "2"), Tuple.Create(3, "3") };
     var outer = new[] { Tuple.Create(1, "11"), Tuple.Create(2, "22") };

     var res = outer.LeftJoin(inner, item => item.Item1, item => item.Item1, (it1, it2) =>
     new { Key = it1.Item1, V1 = it1.Item2, V2 = it2 != null ? it2.Item2 : default(string) });

     foreach (var item in res)
       Console.WriteLine(string.Format("{0}, {1}, {2}", item.Key, item.V1, item.V2));
   }

This is only an option for LINQ to objects however, and won't be able to translate the query to any query providers, which is the most common use case for this operation.
But the question was "How to perform left outer join in C# LINQ to objects ..."
Last param "comparer" in LeftJoin method should be optional parameter equals null I guess
B
Basheer AL-MOMANI

take look at this example

class Person
{
    public int ID { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
    public string Phone { get; set; }
}

class Pet
{
    public string Name { get; set; }
    public Person Owner { get; set; }
}

public static void LeftOuterJoinExample()
{
    Person magnus = new Person {ID = 1, FirstName = "Magnus", LastName = "Hedlund"};
    Person terry = new Person {ID = 2, FirstName = "Terry", LastName = "Adams"};
    Person charlotte = new Person {ID = 3, FirstName = "Charlotte", LastName = "Weiss"};
    Person arlene = new Person {ID = 4, FirstName = "Arlene", LastName = "Huff"};

    Pet barley = new Pet {Name = "Barley", Owner = terry};
    Pet boots = new Pet {Name = "Boots", Owner = terry};
    Pet whiskers = new Pet {Name = "Whiskers", Owner = charlotte};
    Pet bluemoon = new Pet {Name = "Blue Moon", Owner = terry};
    Pet daisy = new Pet {Name = "Daisy", Owner = magnus};

    // Create two lists.
    List<Person> people = new List<Person> {magnus, terry, charlotte, arlene};
    List<Pet> pets = new List<Pet> {barley, boots, whiskers, bluemoon, daisy};

    var query = from person in people
        where person.ID == 4
        join pet in pets on person equals pet.Owner  into personpets
        from petOrNull in personpets.DefaultIfEmpty()
        select new { Person=person, Pet = petOrNull}; 



    foreach (var v in query )
    {
        Console.WriteLine("{0,-15}{1}", v.Person.FirstName + ":", (v.Pet == null ? "Does not Exist" : v.Pet.Name));
    }
}

// This code produces the following output:
//
// Magnus:        Daisy
// Terry:         Barley
// Terry:         Boots
// Terry:         Blue Moon
// Charlotte:     Whiskers
// Arlene:

now you are able to include elements from the left even if that element has no matches in the right, in our case we retrived Arlene even he has no matching in the right

here is the reference

How to: Perform Left Outer Joins (C# Programming Guide)


the output should be: Arlene: Does not Exist
C
Chris Halcrow

This is the general form (as already provided in other answers)

var c =
    from a in alpha
    join b in beta on b.field1 equals a.field1 into b_temp
    from b_value in b_temp.DefaultIfEmpty()
    select new { Alpha = a, Beta = b_value };

However here's an explanation that I hope will clarify what this actually means!

join b in beta on b.field1 equals a.field1 into b_temp

essentially creates a separate result set b_temp that effectively includes null 'rows' for entries on the right hand side (entries in 'b').

Then the next line:

from b_value in b_temp.DefaultIfEmpty()

..iterates over that result set, setting the default null value for the 'row' on the right hand side, and setting the result of the right hand side row join to the value of 'b_value' (i.e. the value that's on the right hand side,if there's a matching record, or 'null' if there isn't).

Now, if the right hand side is the result of a separate LINQ query, it will consist of anonymous types, which can only either be 'something' or 'null'. If it's an enumerable however (e.g. a List - where MyObjectB is a class with 2 fields), then it's possible to be specific about what default 'null' values are used for its properties:

var c =
    from a in alpha
    join b in beta on b.field1 equals a.field1 into b_temp
    from b_value in b_temp.DefaultIfEmpty( new MyObjectB { Field1 = String.Empty, Field2 = (DateTime?) null })
    select new { Alpha = a, Beta_field1 = b_value.Field1, Beta_field2 = b_value.Field2 };

This ensures that 'b' itself isn't null (but its properties can be null, using the default null values that you've specified), and this allows you to check properties of b_value without getting a null reference exception for b_value. Note that for a nullable DateTime, a type of (DateTime?) i.e. 'nullable DateTime' must be specified as the 'Type' of the null in the specification for the 'DefaultIfEmpty' (this will also apply to types that are not 'natively' nullable e.g double, float).

You can perform multiple left outer joins by simply chaining the above syntax.


where does b_value come from?
C
Community

Here's an example if you need to join more than 2 tables:

from d in context.dc_tpatient_bookingd
join bookingm in context.dc_tpatient_bookingm 
     on d.bookingid equals bookingm.bookingid into bookingmGroup
from m in bookingmGroup.DefaultIfEmpty()
join patient in dc_tpatient
     on m.prid equals patient.prid into patientGroup
from p in patientGroup.DefaultIfEmpty()

Ref: https://stackoverflow.com/a/17142392/2343


T
Tim Pohlmann

Here is a fairly easy to understand version using method syntax:

IEnumerable<JoinPair> outerLeft =
    lefts.SelectMany(l => 
        rights.Where(r => l.Key == r.Key)
              .DefaultIfEmpty(new Item())
              .Select(r => new JoinPair { LeftId = l.Id, RightId = r.Id }));

Amusing how it's simpler to avoid LINQ functions containing the word "join" in their name
B
Bezio

Extension method that works like left join with Join syntax

public static class LinQExtensions
{
    public static IEnumerable<TResult> LeftJoin<TOuter, TInner, TKey, TResult>(
        this IEnumerable<TOuter> outer, IEnumerable<TInner> inner, 
        Func<TOuter, TKey> outerKeySelector, 
        Func<TInner, TKey> innerKeySelector, 
        Func<TOuter, TInner, TResult> resultSelector)
    {
        return outer.GroupJoin(
            inner, 
            outerKeySelector, 
            innerKeySelector,
            (outerElement, innerElements) => resultSelector(outerElement, innerElements.FirstOrDefault()));
    }
}

just wrote it in .NET core and it seems to be working as expected.

Small test:

        var Ids = new List<int> { 1, 2, 3, 4};
        var items = new List<Tuple<int, string>>
        {
            new Tuple<int, string>(1,"a"),
            new Tuple<int, string>(2,"b"),
            new Tuple<int, string>(4,"d"),
            new Tuple<int, string>(5,"e"),
        };

        var result = Ids.LeftJoin(
            items,
            id => id,
            item => item.Item1,
            (id, item) => item ?? new Tuple<int, string>(id, "not found"));

        result.ToList()
        Count = 4
        [0]: {(1, a)}
        [1]: {(2, b)}
        [2]: {(3, not found)}
        [3]: {(4, d)}

R
Reese De Wind

I would like to add that if you get the MoreLinq extension there is now support for both homogenous and heterogeneous left joins now

http://morelinq.github.io/2.8/ref/api/html/Overload_MoreLinq_MoreEnumerable_LeftJoin.htm

example:

//Pretend a ClientCompany object and an Employee object both have a ClientCompanyID key on them

return DataContext.ClientCompany
    .LeftJoin(DataContext.Employees,                         //Table being joined
        company => company.ClientCompanyID,                  //First key
        employee => employee.ClientCompanyID,                //Second Key
        company => new {company, employee = (Employee)null}, //Result selector when there isn't a match
        (company, employee) => new { company, employee });   //Result selector when there is a match

EDIT:

In retrospect this may work, but it converts the IQueryable to an IEnumerable as morelinq does not convert the query to SQL.

You can instead use a GroupJoin as described here: https://stackoverflow.com/a/24273804/4251433

This will ensure that it stays as an IQueryable in case you need to do further logical operations on it later.


+1 Since the question specifically requested a solution for "LINQ to objects" rather than "LINQ to SQL," etc., this is the best answer (not reinventing the wheel). Plus, many of the answers here actually throw an exception if items exist in the left collection but not the right one, meaning they aren't left joins at all. They are simply inner joins with pointless exceptions sprinkled on top.
G
Gilad Green

There are three tables: persons, schools and persons_schools, which connects persons to the schools they study in. A reference to the person with id=6 is absent in the table persons_schools. However the person with id=6 is presented in the result lef-joined grid.

List<Person> persons = new List<Person>
{
    new Person { id = 1, name = "Alex", phone = "4235234" },
    new Person { id = 2, name = "Bob", phone = "0014352" },
    new Person { id = 3, name = "Sam", phone = "1345" },
    new Person { id = 4, name = "Den", phone = "3453452" },
    new Person { id = 5, name = "Alen", phone = "0353012" },
    new Person { id = 6, name = "Simon", phone = "0353012" }
};

List<School> schools = new List<School>
{
    new School { id = 1, name = "Saint. John's school"},
    new School { id = 2, name = "Public School 200"},
    new School { id = 3, name = "Public School 203"}
};

List<PersonSchool> persons_schools = new List<PersonSchool>
{
    new PersonSchool{id_person = 1, id_school = 1},
    new PersonSchool{id_person = 2, id_school = 2},
    new PersonSchool{id_person = 3, id_school = 3},
    new PersonSchool{id_person = 4, id_school = 1},
    new PersonSchool{id_person = 5, id_school = 2}
    //a relation to the person with id=6 is absent
};

var query = from person in persons
            join person_school in persons_schools on person.id equals person_school.id_person
            into persons_schools_joined
            from person_school_joined in persons_schools_joined.DefaultIfEmpty()
            from school in schools.Where(var_school => person_school_joined == null ? false : var_school.id == person_school_joined.id_school).DefaultIfEmpty()
            select new { Person = person.name, School = school == null ? String.Empty : school.name };

foreach (var elem in query)
{
    System.Console.WriteLine("{0},{1}", elem.Person, elem.School);
}

While this is maybe the answer of the question provide some explanation about your answer :)
m
mahdi moghimi

Easy way is to use Let keyword. This works for me.

from AItem in Db.A
Let BItem = Db.B.Where(x => x.id == AItem.id ).FirstOrDefault() 
Where SomeCondition
Select new YourViewModel
{
    X1 = AItem.a,
    X2 = AItem.b,
    X3 = BItem.c
}

This is a simulation of Left Join. If each item in B table not match to A item , BItem return null


Note that this only makes sense if you want exactly 1 item in your output list per item in the left input list. If the right list has duplicates, they will be discarded via FirstOrDefault(). So it's not a true left join. However, it's still useful for common situations like retrieving data from a lookup that has unique keys.
o
ozkary

This is a SQL syntax compare to LINQ syntax for inner and left outer joins. Left Outer Join:

http://www.ozkary.com/2011/07/linq-to-entity-inner-and-left-joins.html

"The following example does a group join between product and category. This is essentially the left join. The into expression returns data even if the category table is empty. To access the properties of the category table, we must now select from the enumerable result by adding the from cl in catList.DefaultIfEmpty() statement.


A
Adam Cox

As per my answer to a similar question, here:

Linq to SQL left outer join using Lambda syntax and joining on 2 columns (composite join key)

Get the code here, or clone my github repo, and play!

Query:

        var petOwners =
            from person in People
            join pet in Pets
            on new
            {
                person.Id,
                person.Age,
            }
            equals new
            {
                pet.Id,
                Age = pet.Age * 2, // owner is twice age of pet
            }
            into pets
            from pet in pets.DefaultIfEmpty()
            select new PetOwner
            {
                Person = person,
                Pet = pet,
            };

Lambda:

        var petOwners = People.GroupJoin(
            Pets,
            person => new { person.Id, person.Age },
            pet => new { pet.Id, Age = pet.Age * 2 },
            (person, pet) => new
            {
                Person = person,
                Pets = pet,
            }).SelectMany(
            pet => pet.Pets.DefaultIfEmpty(),
            (people, pet) => new
            {
                people.Person,
                Pet = pet,
            });

H
Hamid

Perform left outer joins in linq C# // Perform left outer joins

class Person
{
    public string FirstName { get; set; }
    public string LastName { get; set; }
}

class Child
{
    public string Name { get; set; }
    public Person Owner { get; set; }
}
public class JoinTest
{
    public static void LeftOuterJoinExample()
    {
        Person magnus = new Person { FirstName = "Magnus", LastName = "Hedlund" };
        Person terry = new Person { FirstName = "Terry", LastName = "Adams" };
        Person charlotte = new Person { FirstName = "Charlotte", LastName = "Weiss" };
        Person arlene = new Person { FirstName = "Arlene", LastName = "Huff" };

        Child barley = new Child { Name = "Barley", Owner = terry };
        Child boots = new Child { Name = "Boots", Owner = terry };
        Child whiskers = new Child { Name = "Whiskers", Owner = charlotte };
        Child bluemoon = new Child { Name = "Blue Moon", Owner = terry };
        Child daisy = new Child { Name = "Daisy", Owner = magnus };

        // Create two lists.
        List<Person> people = new List<Person> { magnus, terry, charlotte, arlene };
        List<Child> childs = new List<Child> { barley, boots, whiskers, bluemoon, daisy };

        var query = from person in people
                    join child in childs
                    on person equals child.Owner into gj
                    from subpet in gj.DefaultIfEmpty()
                    select new
                    {
                        person.FirstName,
                        ChildName = subpet!=null? subpet.Name:"No Child"
                    };
                       // PetName = subpet?.Name ?? String.Empty };

        foreach (var v in query)
        {
            Console.WriteLine($"{v.FirstName + ":",-25}{v.ChildName}");
        }
    }

    // This code produces the following output:
    //
    // Magnus:        Daisy
    // Terry:         Barley
    // Terry:         Boots
    // Terry:         Blue Moon
    // Charlotte:     Whiskers
    // Arlene:        No Child

https://dotnetwithhamid.blogspot.in/


J
Josef

Here's a version of the extension method solution using IQueryable instead of IEnumerable

public class OuterJoinResult<TLeft, TRight>
{
    public TLeft LeftValue { get; set; }
    public TRight RightValue { get; set; }
}

public static IQueryable<TResult> LeftOuterJoin<TLeft, TRight, TKey, TResult>(this IQueryable<TLeft> left, IQueryable<TRight> right, Expression<Func<TLeft, TKey>> leftKey, Expression<Func<TRight, TKey>> rightKey, Expression<Func<OuterJoinResult<TLeft, TRight>, TResult>> result)
{
    return left.GroupJoin(right, leftKey, rightKey, (l, r) => new { l, r })
          .SelectMany(o => o.r.DefaultIfEmpty(), (l, r) => new OuterJoinResult<TLeft, TRight> { LeftValue = l.l, RightValue = r })
          .Select(result);
}

And as often with extension methods, calling the method becomes more complex than just using the basic LINQ methods yourself. Calling GroupJoin in code is not hard at all, esp. not with query syntax.
R
Regular Jo

If you need to join and filter on something, that can be done outside of the join. Filter can be done after creating the collection.

In this case if I do this in the join condition I reduce the rows that are returned.

Ternary condition is used (= n == null ? "__" : n.MonDayNote,)

If the object is null (so no match), then return what is after the ?. __, in this case.

Else, return what is after the :, n.MonDayNote.

Thanks to the other contributors that is where I started with my own issue.

        var schedLocations = (from f in db.RAMS_REVENUE_LOCATIONS
              join n in db.RAMS_LOCATION_PLANNED_MANNING on f.revenueCenterID equals

                  n.revenueCenterID into lm

              from n in lm.DefaultIfEmpty()

              join r in db.RAMS_LOCATION_SCHED_NOTE on f.revenueCenterID equals r.revenueCenterID
              into locnotes

              from r in locnotes.DefaultIfEmpty()
              where f.LocID == nLocID && f.In_Use == true && f.revenueCenterID > 1000

              orderby f.Areano ascending, f.Locname ascending
              select new
              {
                  Facname = f.Locname,
                  f.Areano,
                  f.revenueCenterID,
                  f.Locabbrev,

                  //  MonNote = n == null ? "__" : n.MonDayNote,
                  MonNote = n == null ? "__" : n.MonDayNote,
                  TueNote = n == null ? "__" : n.TueDayNote,
                  WedNote = n == null ? "__" : n.WedDayNote,
                  ThuNote = n == null ? "__" : n.ThuDayNote,

                  FriNote = n == null ? "__" : n.FriDayNote,
                  SatNote = n == null ? "__" : n.SatDayNote,
                  SunNote = n == null ? "__" : n.SunDayNote,
                  MonEmpNbr = n == null ? 0 : n.MonEmpNbr,
                  TueEmpNbr = n == null ? 0 : n.TueEmpNbr,
                  WedEmpNbr = n == null ? 0 : n.WedEmpNbr,
                  ThuEmpNbr = n == null ? 0 : n.ThuEmpNbr,
                  FriEmpNbr = n == null ? 0 : n.FriEmpNbr,
                  SatEmpNbr = n == null ? 0 : n.SatEmpNbr,
                  SunEmpNbr = n == null ? 0 : n.SunEmpNbr,
                  SchedMondayDate = n == null ? dMon : n.MondaySchedDate,
                  LocNotes = r == null ? "Notes: N/A" : r.LocationNote

              }).ToList();
                Func<int, string> LambdaManning = (x) => { return x == 0 ? "" : "Manning:" + x.ToString(); };
        DataTable dt_ScheduleMaster = PsuedoSchedule.Tables["ScheduleMasterWithNotes"];
        var schedLocations2 = schedLocations.Where(x => x.SchedMondayDate == dMon);

M
Manikandan Deivasigamani
class Program
{
    List<Employee> listOfEmp = new List<Employee>();
    List<Department> listOfDepart = new List<Department>();

    public Program()
    {
        listOfDepart = new List<Department>(){
            new Department { Id = 1, DeptName = "DEV" },
            new Department { Id = 2, DeptName = "QA" },
            new Department { Id = 3, DeptName = "BUILD" },
            new Department { Id = 4, DeptName = "SIT" }
        };


        listOfEmp = new List<Employee>(){
            new Employee { Empid = 1, Name = "Manikandan",DepartmentId=1 },
            new Employee { Empid = 2, Name = "Manoj" ,DepartmentId=1},
            new Employee { Empid = 3, Name = "Yokesh" ,DepartmentId=0},
            new Employee { Empid = 3, Name = "Purusotham",DepartmentId=0}
        };

    }
    static void Main(string[] args)
    {
        Program ob = new Program();
        ob.LeftJoin();
        Console.ReadLine();
    }

    private void LeftJoin()
    {
        listOfEmp.GroupJoin(listOfDepart.DefaultIfEmpty(), x => x.DepartmentId, y => y.Id, (x, y) => new { EmpId = x.Empid, EmpName = x.Name, Dpt = y.FirstOrDefault() != null ? y.FirstOrDefault().DeptName : null }).ToList().ForEach
            (z =>
            {
                Console.WriteLine("Empid:{0} EmpName:{1} Dept:{2}", z.EmpId, z.EmpName, z.Dpt);
            });
    }
}

class Employee
{
    public int Empid { get; set; }
    public string Name { get; set; }
    public int DepartmentId { get; set; }
}

class Department
{
    public int Id { get; set; }
    public string DeptName { get; set; }
}

OUTPUT


G
Golden Lion

Overview: In this code snippet, I demonstrate how to group by ID where Table1 and Table2 have a one to many relationship. I group on Id, Field1, and Field2. The subquery is helpful, if a third Table lookup is required and it would have required a left join relationship. I show a left join grouping and a subquery linq. The results are equivalent.

class MyView
{
public integer Id {get,set};
    public String Field1  {get;set;}
public String Field2 {get;set;}
    public String SubQueryName {get;set;}                           
}

IList<MyView> list = await (from ci in _dbContext.Table1
                                               join cii in _dbContext.Table2
                                                   on ci.Id equals cii.Id

                                               where ci.Field1 == criterion
                                               group new
                                               {
                                                   ci.Id
                                               } by new { ci.Id, cii.Field1, ci.Field2}

                                           into pg
                                               select new MyView
                                               {
                                                   Id = pg.Key.Id,
                                                   Field1 = pg.Key.Field1,
                                                   Field2 = pg.Key.Field2,
                                                   SubQueryName=
                                                   (from chv in _dbContext.Table3 where chv.Id==pg.Key.Id select chv.Field1).FirstOrDefault()
                                               }).ToListAsync<MyView>();


 Compared to using a Left Join and Group new

IList<MyView> list = await (from ci in _dbContext.Table1
                                               join cii in _dbContext.Table2
                                                   on ci.Id equals cii.Id

                       join chv in _dbContext.Table3
                                                  on cii.Id equals chv.Id into lf_chv
                                                from chv in lf_chv.DefaultIfEmpty()

                                               where ci.Field1 == criterion
                                               group new
                                               {
                                                   ci.Id
                                               } by new { ci.Id, cii.Field1, ci.Field2, chv.FieldValue}

                                           into pg
                                               select new MyView
                                               {
                                                   Id = pg.Key.Id,
                                                   Field1 = pg.Key.Field1,
                                                   Field2 = pg.Key.Field2,
                                                   SubQueryName=pg.Key.FieldValue
                                               }).ToListAsync<MyView>();

N
Nikolay Kostov
(from a in db.Assignments
     join b in db.Deliveryboys on a.AssignTo equals b.EmployeeId  

     //from d in eGroup.DefaultIfEmpty()
     join  c in  db.Deliveryboys on a.DeliverTo equals c.EmployeeId into eGroup2
     from e in eGroup2.DefaultIfEmpty()
     where (a.Collected == false)
     select new
     {
         OrderId = a.OrderId,
         DeliveryBoyID = a.AssignTo,
         AssignedBoyName = b.Name,
         Assigndate = a.Assigndate,
         Collected = a.Collected,
         CollectedDate = a.CollectedDate,
         CollectionBagNo = a.CollectionBagNo,
         DeliverTo = e == null ? "Null" : e.Name,
         DeliverDate = a.DeliverDate,
         DeliverBagNo = a.DeliverBagNo,
         Delivered = a.Delivered

     });