What is pivot?
How do I pivot?
Is this a pivot?
Long format to wide format?
I've seen a lot of questions that ask about pivot tables. Even if they don't know that they are asking about pivot tables, they usually are. It is virtually impossible to write a canonical question and answer that encompasses all aspects of pivoting...
... But I'm going to give it a go.
The problem with existing questions and answers is that often the question is focused on a nuance that the OP has trouble generalizing in order to use a number of the existing good answers. However, none of the answers attempt to give a comprehensive explanation (because it's a daunting task)
Look a few examples from my Google Search
How to pivot a dataframe in Pandas?
Good question and answer. But the answer only answers the specific question with little explanation.
pandas pivot table to data frame
In this question, the OP is concerned with the output of the pivot. Namely how the columns look. OP wanted it to look like R. This isn't very helpful for pandas users.
pandas pivoting a dataframe, duplicate rows
Another decent question but the answer focuses on one method, namely pd.DataFrame.pivot
So whenever someone searches for pivot
they get sporadic results that are likely not going to answer their specific question.
Setup
You may notice that I conspicuously named my columns and relevant column values to correspond with how I'm going to pivot in the answers below.
import numpy as np
import pandas as pd
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(
add(cols, arr1), columns=cols
).join(
pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val')
)
print(df)
key row item col val0 val1
0 key0 row3 item1 col3 0.81 0.04
1 key1 row2 item1 col2 0.44 0.07
2 key1 row0 item1 col0 0.77 0.01
3 key0 row4 item0 col2 0.15 0.59
4 key1 row0 item2 col1 0.81 0.64
5 key1 row2 item2 col4 0.13 0.88
6 key2 row4 item1 col3 0.88 0.39
7 key1 row4 item1 col1 0.10 0.07
8 key1 row0 item2 col4 0.65 0.02
9 key1 row2 item0 col2 0.35 0.61
10 key2 row0 item2 col1 0.40 0.85
11 key2 row4 item1 col2 0.64 0.25
12 key0 row2 item2 col3 0.50 0.44
13 key0 row4 item1 col4 0.24 0.46
14 key1 row3 item2 col3 0.28 0.11
15 key0 row3 item1 col1 0.31 0.23
16 key0 row0 item2 col3 0.86 0.01
17 key0 row4 item0 col3 0.64 0.21
18 key2 row2 item2 col0 0.13 0.45
19 key0 row2 item0 col4 0.37 0.70
Question(s)
Why do I get ValueError: Index contains duplicate entries, cannot reshape How do I pivot df such that the col values are columns, row values are the index, and mean of val0 are the values? col col0 col1 col2 col3 col4 row row0 0.77 0.605 NaN 0.860 0.65 row2 0.13 NaN 0.395 0.500 0.25 row3 NaN 0.310 NaN 0.545 NaN row4 NaN 0.100 0.395 0.760 0.24 How do I pivot df such that the col values are columns, row values are the index, mean of val0 are the values, and missing values are 0? col col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.100 0.395 0.760 0.24 Can I get something other than mean, like maybe sum? col col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 row2 0.13 0.00 0.79 0.50 0.50 row3 0.00 0.31 0.00 1.09 0.00 row4 0.00 0.10 0.79 1.52 0.24 Can I do more that one aggregation at a time? sum mean col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.00 0.79 0.50 0.50 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.31 0.00 1.09 0.00 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.10 0.79 1.52 0.24 0.00 0.100 0.395 0.760 0.24 Can I aggregate over multiple value columns? val0 val1 col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02 row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79 row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00 row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46 Can Subdivide by multiple columns? item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 row row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65 row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00 row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00 Or item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 key row key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00 row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65 row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13 row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00 Can I aggregate the frequency in which the column and rows occur together, aka "cross tabulation"? col col0 col1 col2 col3 col4 row row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1 How do I convert a DataFrame from long to wide by pivoting on ONLY two columns? Given, np.random.seed([3, 1415]) df2 = pd.DataFrame({'A': list('aaaabbbc'), 'B': np.random.choice(15, 8)}) df2 A B 0 a 0 1 a 11 2 a 2 3 a 11 4 b 10 5 b 10 6 b 14 7 c 7 The expected should look something like a b c 0 0.0 10.0 7.0 1 11.0 10.0 NaN 2 2.0 14.0 NaN 3 11.0 NaN NaN How do I flatten the multiple index to single index after pivot? From 1 2 1 1 2 a 2 1 1 b 2 1 0 c 1 0 0 To 1|1 2|1 2|2 a 2 1 1 b 2 1 0 c 1 0 0
We start by answering the first question:
Question 1
Why do I get ValueError: Index contains duplicate entries, cannot reshape
This occurs because pandas is attempting to reindex either a columns
or index
object with duplicate entries. There are varying methods to use that can perform a pivot. Some of them are not well suited to when there are duplicates of the keys in which it is being asked to pivot on. For example. Consider pd.DataFrame.pivot
. I know there are duplicate entries that share the row
and col
values:
df.duplicated(['row', 'col']).any()
True
So when I pivot
using
df.pivot(index='row', columns='col', values='val0')
I get the error mentioned above. In fact, I get the same error when I try to perform the same task with:
df.set_index(['row', 'col'])['val0'].unstack()
Here is a list of idioms we can use to pivot
pd.DataFrame.groupby + pd.DataFrame.unstack Good general approach for doing just about any type of pivot You specify all columns that will constitute the pivoted row levels and column levels in one group by. You follow that by selecting the remaining columns you want to aggregate and the function(s) you want to perform the aggregation. Finally, you unstack the levels that you want to be in the column index. pd.DataFrame.pivot_table A glorified version of groupby with more intuitive API. For many people, this is the preferred approach. And is the intended approach by the developers. Specify row level, column levels, values to be aggregated, and function(s) to perform aggregations. pd.DataFrame.set_index + pd.DataFrame.unstack Convenient and intuitive for some (myself included). Cannot handle duplicate grouped keys. Similar to the groupby paradigm, we specify all columns that will eventually be either row or column levels and set those to be the index. We then unstack the levels we want in the columns. If either the remaining index levels or column levels are not unique, this method will fail. pd.DataFrame.pivot Very similar to set_index in that it shares the duplicate key limitation. The API is very limited as well. It only takes scalar values for index, columns, values. Similar to the pivot_table method in that we select rows, columns, and values on which to pivot. However, we cannot aggregate and if either rows or columns are not unique, this method will fail. pd.crosstab This a specialized version of pivot_table and in its purest form is the most intuitive way to perform several tasks. pd.factorize + np.bincount This is a highly advanced technique that is very obscure but is very fast. It cannot be used in all circumstances, but when it can be used and you are comfortable using it, you will reap the performance rewards. pd.get_dummies + pd.DataFrame.dot I use this for cleverly performing cross tabulation.
Examples
What I'm going to do for each subsequent answer and question is to answer it using pd.DataFrame.pivot_table
. Then I'll provide alternatives to perform the same task.
Question 3
How do I pivot df such that the col values are columns, row values are the index, mean of val0 are the values, and missing values are 0?
pd.DataFrame.pivot_table fill_value is not set by default. I tend to set it appropriately. In this case I set it to 0. Notice I skipped question 2 as it's the same as this answer without the fill_value aggfunc='mean' is the default and I didn't have to set it. I included it to be explicit. df.pivot_table( values='val0', index='row', columns='col', fill_value=0, aggfunc='mean') col col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.100 0.395 0.760 0.24
fill_value is not set by default. I tend to set it appropriately. In this case I set it to 0. Notice I skipped question 2 as it's the same as this answer without the fill_value
aggfunc='mean' is the default and I didn't have to set it. I included it to be explicit. df.pivot_table( values='val0', index='row', columns='col', fill_value=0, aggfunc='mean') col col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 row2 0.13 0.000 0.395 0.500 0.25 row3 0.00 0.310 0.000 0.545 0.00 row4 0.00 0.100 0.395 0.760 0.24
pd.DataFrame.groupby df.groupby(['row', 'col'])['val0'].mean().unstack(fill_value=0)
pd.crosstab pd.crosstab( index=df['row'], columns=df['col'], values=df['val0'], aggfunc='mean').fillna(0)
Question 4
Can I get something other than mean, like maybe sum?
pd.DataFrame.pivot_table df.pivot_table( values='val0', index='row', columns='col', fill_value=0, aggfunc='sum') col col0 col1 col2 col3 col4 row row0 0.77 1.21 0.00 0.86 0.65 row2 0.13 0.00 0.79 0.50 0.50 row3 0.00 0.31 0.00 1.09 0.00 row4 0.00 0.10 0.79 1.52 0.24
pd.DataFrame.groupby df.groupby(['row', 'col'])['val0'].sum().unstack(fill_value=0)
pd.crosstab pd.crosstab( index=df['row'], columns=df['col'], values=df['val0'], aggfunc='sum').fillna(0)
Question 5
Can I do more that one aggregation at a time?
Notice that for pivot_table
and crosstab
I needed to pass list of callables. On the other hand, groupby.agg
is able to take strings for a limited number of special functions. groupby.agg
would also have taken the same callables we passed to the others, but it is often more efficient to leverage the string function names as there are efficiencies to be gained.
pd.DataFrame.pivot_table df.pivot_table( values='val0', index='row', columns='col', fill_value=0, aggfunc=[np.size, np.mean]) size mean col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 1 2 0 1 1 0.77 0.605 0.000 0.860 0.65 row2 1 0 2 1 2 0.13 0.000 0.395 0.500 0.25 row3 0 1 0 2 0 0.00 0.310 0.000 0.545 0.00 row4 0 1 2 2 1 0.00 0.100 0.395 0.760 0.24
pd.DataFrame.groupby df.groupby(['row', 'col'])['val0'].agg(['size', 'mean']).unstack(fill_value=0)
pd.crosstab pd.crosstab( index=df['row'], columns=df['col'], values=df['val0'], aggfunc=[np.size, np.mean]).fillna(0, downcast='infer')
Question 6
Can I aggregate over multiple value columns?
pd.DataFrame.pivot_table we pass values=['val0', 'val1'] but we could've left that off completely df.pivot_table( values=['val0', 'val1'], index='row', columns='col', fill_value=0, aggfunc='mean') val0 val1 col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4 row row0 0.77 0.605 0.000 0.860 0.65 0.01 0.745 0.00 0.010 0.02 row2 0.13 0.000 0.395 0.500 0.25 0.45 0.000 0.34 0.440 0.79 row3 0.00 0.310 0.000 0.545 0.00 0.00 0.230 0.00 0.075 0.00 row4 0.00 0.100 0.395 0.760 0.24 0.00 0.070 0.42 0.300 0.46
pd.DataFrame.groupby df.groupby(['row', 'col'])['val0', 'val1'].mean().unstack(fill_value=0)
Question 7
Can Subdivide by multiple columns?
pd.DataFrame.pivot_table df.pivot_table( values='val0', index='row', columns=['item', 'col'], fill_value=0, aggfunc='mean') item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 row row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.605 0.86 0.65 row2 0.35 0.00 0.37 0.00 0.00 0.44 0.00 0.00 0.13 0.000 0.50 0.13 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.000 0.28 0.00 row4 0.15 0.64 0.00 0.00 0.10 0.64 0.88 0.24 0.00 0.000 0.00 0.00
pd.DataFrame.groupby df.groupby( ['row', 'item', 'col'] )['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
Question 8
Can Subdivide by multiple columns?
pd.DataFrame.pivot_table df.pivot_table( values='val0', index=['key', 'row'], columns=['item', 'col'], fill_value=0, aggfunc='mean') item item0 item1 item2 col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4 key row key0 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 row2 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 row3 0.00 0.00 0.00 0.00 0.31 0.00 0.81 0.00 0.00 0.00 0.00 0.00 row4 0.15 0.64 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 key1 row0 0.00 0.00 0.00 0.77 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.65 row2 0.35 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.13 row3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00 row4 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 key2 row0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 row2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 row4 0.00 0.00 0.00 0.00 0.00 0.64 0.88 0.00 0.00 0.00 0.00 0.00
pd.DataFrame.groupby df.groupby( ['key', 'row', 'item', 'col'] )['val0'].mean().unstack(['item', 'col']).fillna(0).sort_index(1)
pd.DataFrame.set_index because the set of keys are unique for both rows and columns df.set_index( ['key', 'row', 'item', 'col'] )['val0'].unstack(['item', 'col']).fillna(0).sort_index(1)
Question 9
Can I aggregate the frequency in which the column and rows occur together, aka "cross tabulation"?
pd.DataFrame.pivot_table df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size') col col0 col1 col2 col3 col4 row row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1
pd.DataFrame.groupby df.groupby(['row', 'col'])['val0'].size().unstack(fill_value=0)
pd.crosstab pd.crosstab(df['row'], df['col'])
pd.factorize + np.bincount # get integer factorization `i` and unique values `r` # for column `'row'` i, r = pd.factorize(df['row'].values) # get integer factorization `j` and unique values `c` # for column `'col'` j, c = pd.factorize(df['col'].values) # `n` will be the number of rows # `m` will be the number of columns n, m = r.size, c.size # `i * m + j` is a clever way of counting the # factorization bins assuming a flat array of length # `n * m`. Which is why we subsequently reshape as `(n, m)` b = np.bincount(i * m + j, minlength=n * m).reshape(n, m) # BTW, whenever I read this, I think 'Bean, Rice, and Cheese' pd.DataFrame(b, r, c) col3 col2 col0 col1 col4 row3 2 0 0 1 0 row2 1 2 1 0 2 row0 1 0 1 2 1 row4 2 2 0 1 1
pd.get_dummies pd.get_dummies(df['row']).T.dot(pd.get_dummies(df['col'])) col0 col1 col2 col3 col4 row0 1 2 0 1 1 row2 1 0 2 1 2 row3 0 1 0 2 0 row4 0 1 2 2 1
Question 10
How do I convert a DataFrame from long to wide by pivoting on ONLY two columns?
DataFrame.pivot The first step is to assign a number to each row - this number will be the row index of that value in the pivoted result. This is done using GroupBy.cumcount: df2.insert(0, 'count', df2.groupby('A').cumcount()) df2 count A B 0 0 a 0 1 1 a 11 2 2 a 2 3 3 a 11 4 0 b 10 5 1 b 10 6 2 b 14 7 0 c 7 The second step is to use the newly created column as the index to call DataFrame.pivot. df2.pivot(*df2) # df2.pivot(index='count', columns='A', values='B') A a b c count 0 0.0 10.0 7.0 1 11.0 10.0 NaN 2 2.0 14.0 NaN 3 11.0 NaN NaN
DataFrame.pivot_table Whereas DataFrame.pivot only accepts columns, DataFrame.pivot_table also accepts arrays, so the GroupBy.cumcount can be passed directly as the index without creating an explicit column. df2.pivot_table(index=df2.groupby('A').cumcount(), columns='A', values='B') A a b c 0 0.0 10.0 7.0 1 11.0 10.0 NaN 2 2.0 14.0 NaN 3 11.0 NaN NaN
Question 11
How do I flatten the multiple index to single index after pivot
If columns
type object
with string join
df.columns = df.columns.map('|'.join)
else format
df.columns = df.columns.map('{0[0]}|{0[1]}'.format)
To extend @piRSquared's answer another version of Question 10
Question 10.1
DataFrame:
d = data = {'A': {0: 1, 1: 1, 2: 1, 3: 2, 4: 2, 5: 3, 6: 5},
'B': {0: 'a', 1: 'b', 2: 'c', 3: 'a', 4: 'b', 5: 'a', 6: 'c'}}
df = pd.DataFrame(d)
A B
0 1 a
1 1 b
2 1 c
3 2 a
4 2 b
5 3 a
6 5 c
Output:
0 1 2
A
1 a b c
2 a b None
3 a None None
5 c None None
Using df.groupby
and pd.Series.tolist
t = df.groupby('A')['B'].apply(list)
out = pd.DataFrame(t.tolist(),index=t.index)
out
0 1 2
A
1 a b c
2 a b None
3 a None None
5 c None None
Or A much better alternative using pd.pivot_table
with df.squeeze.
t = df.pivot_table(index='A',values='B',aggfunc=list).squeeze()
out = pd.DataFrame(t.tolist(),index=t.index)
To better understand how pivot works you can look at the example from Pandas documentation:
https://i.stack.imgur.com/GPsB5.png
df = pd.DataFrame({
'foo': ['one', 'one', 'one', 'two', 'two', 'two'],
'bar': ['A', 'B', 'C', 'A', 'B', 'C'],
'baz': [1, 2, 3, 4, 5, 6],
'zoo': ['x', 'y', 'z', 'q', 'w', 't']
})
Input Table:
foo bar baz zoo
0 one A 1 x
1 one B 2 y
2 one C 3 z
3 two A 4 q
4 two B 5 w
5 two C 6 t
Pivot:
pd.pivot(
data=df,
index='foo', # Column to use to make new frame’s index. If None, uses existing index.
columns='bar', # Column to use to make new frame’s columns.
values='baz' # Column(s) to use for populating new frame’s values.
)
Output table:
bar A B C
foo
one 1 2 3
two 4 5 6
You can use list of column names as index
, columns
and values
arguments.
rows, cols, vals, aggfuncs = ['row', 'key'], ['col', 'item'], ['val0', 'val1'], ['mean', 'sum']
df.groupby(rows+cols)[vals].agg(aggfuncs).unstack(cols)
# equivalently,
df.pivot_table(vals, rows, cols, aggfuncs)
df.set_index(rows+cols)[vals].unstack(cols)
# equivalently,
df.pivot(rows, cols, vals)
You can also apply the insight from Question 10 to multi-column pivot operation as well. Simply append the auxiliary index from groupby().cumcount()
to either rows
or cols
depending on how you want your result to be (appending it to rows
makes the result "long", and appending it to cols
makes it "wide"). Additionally, calling droplevel().reset_index()
fixes the surplus and duplicate index issue.
# for "long" result
df.assign(ix=df.groupby(rows+cols).cumcount()).pivot(rows+['ix'], cols, vals).droplevel(-1).reset_index()
# for "wide" result
df.assign(ix=df.groupby(rows+cols).cumcount()).pivot(rows, cols+['ix'], vals).droplevel(-1, axis=1).reset_index()
For example, the following doesn't work.
df = pd.DataFrame({'A': [1, 1, 2], 'B': ['a', 'a', 'b'], 'C': range(3)})
df.pivot('A','B','C')
But the following work:
# long
(
df.assign(ix=df.groupby(['A','B']).cumcount())
.pivot(['A','ix'], 'B', 'C')
.droplevel(-1).reset_index()
)
B A a b
0 1 0.0 NaN
1 1 1.0 NaN
2 2 NaN 2.0
# wide
(
df.assign(ix=df.groupby(['A','B']).cumcount())
.pivot('A', ['B', 'ix'], 'C')
.droplevel(-1, axis=1).reset_index()
)
B A a a b
0 1 0.0 1.0 NaN
1 2 NaN NaN 2.0
pivot_table()
with aggfunc
results in aggregated data, which is very similar to a groupby.agg()
. pivot()
is simply reshaping and/or stacking data (reminiscent of numpy reshape and stack methods), so naturally, it's related to their pandas cousins, unstack()
and stack()
.
In fact, if we check the source code, internally, each method pair are the same.
pivot_table = groupby + unstack pivot = set_index + unstack crosstab = pivot_table
Using the setup in the OP:
from numpy.core.defchararray import add
np.random.seed([3,1415])
n = 20
cols = np.array(['key', 'row', 'item', 'col'])
arr1 = (np.random.randint(5, size=(n, 4)) // [2, 1, 2, 1]).astype(str)
df = pd.DataFrame(add(cols, arr1), columns=cols).join(pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val'))
rows, cols, vals, aggfuncs = ['row', 'key'], ['col', 'val1'], ['val0'], ['mean', 'sum']
pivot_table() aggregates the values and unstacks it. Specifically, it creates a single flat list out of index and columns, calls groupby() with this list as the grouper and aggregates using the passed aggregator methods (the default is mean). Then after aggregation, it calls unstack() by the list of columns. So internally, pivot_table = groupby + unstack. Moreover, if fill_value is passed, fillna() is called. In other words, the method that produces pv_1 is the same as the method that produces gb_1 in the example below.
pv_1 = df.pivot_table(index=rows, columns=cols, values=vals, aggfunc=aggfuncs, fill_value=0)
# internal operation of `pivot_table()`
gb_1 = df.groupby(rows+cols)[vals].agg(aggfuncs).unstack(cols).fillna(0, downcast="infer")
pv_1.equals(gb_1) # True
pivot() creates a MultiIndex from the column values passed as index and columns, builds a MultiIndex DataFrame and calls unstack() by the list of columns. So internally, pivot = set_index + unstack. In other words, all of the following are True:
# if the entire df needs to be pivoted
pv_2 = df.pivot(index=rows, columns=cols)
# internal operation of `pivot()`
su_2 = df.set_index(rows+cols).unstack(cols)
pv_2.equals(su_2) # True
# if only subset of df.columns need to be considered for pivot, specify so
pv_3 = df.pivot(index=rows, columns=cols, values=vals)
su_3 = df.set_index(rows+cols)[vals].unstack(cols)
pv_3.equals(su_3) # True
# this is the precise method used internally (building a new DF seems to be faster than set_index of an existing one)
pv_4 = df.pivot(index=rows, columns=cols, values=vals)
su_4 = pd.DataFrame(df[vals].values, index=pd.MultiIndex.from_arrays([df[c] for c in rows+cols]), columns=vals).unstack(cols)
pv_4.equals(su_4) # True
crosstab() calls pivot_table(), i.e., crosstab = pivot_table. Specifically, it builds a DataFrame out of the passed arrays of values, filters it by the common indices and calls pivot_table(). It's more limited than pivot_table() because it only allows a one-dimensional array-like as values, unlike pivot_table() that can have multiple columns as values. In other words, the following is True.
indexes, columns, values = [df[r] for r in rows], [df[c] for c in cols], next(df[v] for v in vals)
# crosstab
ct_5 = pd.crosstab(indexes, columns, values, aggfunc=aggfuncs)
# internal operation (abbreviated)
from functools import reduce
data = pd.DataFrame({f'row_{i}': r for i, r in enumerate(indexes)} | {f'col_{i}': c for i, c in enumerate(columns)} | {'v': values},
index = reduce(lambda x, y: x.intersection(y.index), indexes[1:]+columns, indexes[0].index)
)
pv_5 = data.pivot_table('v', [k for k in data if k[:4]=='row_'], [k for k in data if k[:4]=='col_'], aggfuncs)
ct_5.equals(pv_5) # True
Success story sharing
KeyError: 'A'
. Is there more to the answer?df
should be changed todf2
. If you were following along like I wasdf
is the earlier dataframe created.