ChatGPT解决这个技术问题 Extra ChatGPT

How to iterate over rows in a DataFrame in Pandas

I have a pandas dataframe, df:

   c1   c2
0  10  100
1  11  110
2  12  120

How do I iterate over the rows of this dataframe? For every row, I want to be able to access its elements (values in cells) by the name of the columns. For example:

for row in df.rows:
   print(row['c1'], row['c2'])

I found a similar question which suggests using either of these:

for date, row in df.T.iteritems():
for row in df.iterrows():

But I do not understand what the row object is and how I can work with it.

The df.iteritems() iterates over columns and not rows. Thus, to make it iterate over rows, you have to transpose (the "T"), which means you change rows and columns into each other (reflect over diagonal). As a result, you effectively iterate the original dataframe over its rows when you use df.T.iteritems()
In contrast to what cs95 says, there are perfectly fine reasons to want to iterate over a dataframe, so new users should not feel discouraged. One example is if you want to execute some code using the values of each row as input. Also, if your dataframe is reasonably small (e.g. less than 1000 items), performance is not really an issue.
@cs95 It seems to me that dataframes are the go-to table format in Python. So whenever you want to read in a csv, or you have a list of dicts whose values you want to manipulate, or you want to perform simple join, groupby or window operations, you use a dataframe, even if your data is comparitively small.
@cs95 No, but this was in response to "using a DataFrame at all". My point is that this is why one may have one's data in a dataframe. If you then want to e.g. run a script for each line of your data, you have to iterate over that dataframe.
I second @oulenz. As far as I can tell pandas is the go-to choice of reading a csv file even if the dataset is small. It's simply easier programing to manipulate the data with APIs

M
Mateen Ulhaq

DataFrame.iterrows is a generator which yields both the index and row (as a Series):

import pandas as pd

df = pd.DataFrame({'c1': [10, 11, 12], 'c2': [100, 110, 120]})
df = df.reset_index()  # make sure indexes pair with number of rows

for index, row in df.iterrows():
    print(row['c1'], row['c2'])
10 100
11 110
12 120

Note: "Because iterrows returns a Series for each row, it does not preserve dtypes across the rows." Also, "You should never modify something you are iterating over." According to pandas 0.19.1 docs
@viddik13 that's a great note thanks. Because of that I ran into a case where numerical values like 431341610650 where read as 4.31E+11. Is there a way around preserving the dtypes?
@AzizAlto use itertuples, as explained below. See also pandas.pydata.org/pandas-docs/stable/generated/…
Do not use iterrows. Itertuples is faster and preserves data type. More info
From the documentation: "Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed[...]". Your answer is correct (in the context of the question) but does not mention this anywhere, so it isn't a very good one.
c
cs95

How to iterate over rows in a DataFrame in Pandas?

Answer: DON'T*!

Iteration in Pandas is an anti-pattern and is something you should only do when you have exhausted every other option. You should not use any function with "iter" in its name for more than a few thousand rows or you will have to get used to a lot of waiting.

Do you want to print a DataFrame? Use DataFrame.to_string().

Do you want to compute something? In that case, search for methods in this order (list modified from here):

Vectorization Cython routines List Comprehensions (vanilla for loop) DataFrame.apply(): i) Reductions that can be performed in Cython, ii) Iteration in Python space DataFrame.itertuples() and iteritems() DataFrame.iterrows()

iterrows and itertuples (both receiving many votes in answers to this question) should be used in very rare circumstances, such as generating row objects/nametuples for sequential processing, which is really the only thing these functions are useful for.

Appeal to Authority

The documentation page on iteration has a huge red warning box that says:

Iterating through pandas objects is generally slow. In many cases, iterating manually over the rows is not needed [...].

* It's actually a little more complicated than "don't". df.iterrows() is the correct answer to this question, but "vectorize your ops" is the better one. I will concede that there are circumstances where iteration cannot be avoided (for example, some operations where the result depends on the value computed for the previous row). However, it takes some familiarity with the library to know when. If you're not sure whether you need an iterative solution, you probably don't. PS: To know more about my rationale for writing this answer, skip to the very bottom.

Faster than Looping: Vectorization, Cython

A good number of basic operations and computations are "vectorised" by pandas (either through NumPy, or through Cythonized functions). This includes arithmetic, comparisons, (most) reductions, reshaping (such as pivoting), joins, and groupby operations. Look through the documentation on Essential Basic Functionality to find a suitable vectorised method for your problem.

If none exists, feel free to write your own using custom Cython extensions.

Next Best Thing: List Comprehensions*

List comprehensions should be your next port of call if 1) there is no vectorized solution available, 2) performance is important, but not important enough to go through the hassle of cythonizing your code, and 3) you're trying to perform elementwise transformation on your code. There is a good amount of evidence to suggest that list comprehensions are sufficiently fast (and even sometimes faster) for many common Pandas tasks.

The formula is simple,

# Iterating over one column - `f` is some function that processes your data
result = [f(x) for x in df['col']]
# Iterating over two columns, use `zip`
result = [f(x, y) for x, y in zip(df['col1'], df['col2'])]
# Iterating over multiple columns - same data type
result = [f(row[0], ..., row[n]) for row in df[['col1', ...,'coln']].to_numpy()]
# Iterating over multiple columns - differing data type
result = [f(row[0], ..., row[n]) for row in zip(df['col1'], ..., df['coln'])]

If you can encapsulate your business logic into a function, you can use a list comprehension that calls it. You can make arbitrarily complex things work through the simplicity and speed of raw Python code.

Caveats

List comprehensions assume that your data is easy to work with - what that means is your data types are consistent and you don't have NaNs, but this cannot always be guaranteed.

The first one is more obvious, but when dealing with NaNs, prefer in-built pandas methods if they exist (because they have much better corner-case handling logic), or ensure your business logic includes appropriate NaN handling logic. When dealing with mixed data types you should iterate over zip(df['A'], df['B'], ...) instead of df[['A', 'B']].to_numpy() as the latter implicitly upcasts data to the most common type. As an example if A is numeric and B is string, to_numpy() will cast the entire array to string, which may not be what you want. Fortunately zipping your columns together is the most straightforward workaround to this.

*Your mileage may vary for the reasons outlined in the Caveats section above.

An Obvious Example

Let's demonstrate the difference with a simple example of adding two pandas columns A + B. This is a vectorizable operaton, so it will be easy to contrast the performance of the methods discussed above.

Benchmarking code, for your reference. The line at the bottom measures a function written in numpandas, a style of Pandas that mixes heavily with NumPy to squeeze out maximum performance. Writing numpandas code should be avoided unless you know what you're doing. Stick to the API where you can (i.e., prefer vec over vec_numpy).

I should mention, however, that it isn't always this cut and dry. Sometimes the answer to "what is the best method for an operation" is "it depends on your data". My advice is to test out different approaches on your data before settling on one.

My Personal Opinion *

Most of the analyses performed on the various alternatives to the iter family has been through the lens of performance. However, in most situations you will typically be working on a reasonably sized dataset (nothing beyond a few thousand or 100K rows) and performance will come second to simplicity/readability of the solution.

Here is my personal preference when selecting a method to use for a problem.

For the novice:

Vectorization (when possible); apply(); List Comprehensions; itertuples()/iteritems(); iterrows(); Cython

For the more experienced:

Vectorization (when possible); apply(); List Comprehensions; Cython; itertuples()/iteritems(); iterrows()

Vectorization prevails as the most idiomatic method for any problem that can be vectorized. Always seek to vectorize! When in doubt, consult the docs, or look on Stack Overflow for an existing question on your particular task.

I do tend to go on about how bad apply is in a lot of my posts, but I do concede it is easier for a beginner to wrap their head around what it's doing. Additionally, there are quite a few use cases for apply has explained in this post of mine.

Cython ranks lower down on the list because it takes more time and effort to pull off correctly. You will usually never need to write code with pandas that demands this level of performance that even a list comprehension cannot satisfy.

* As with any personal opinion, please take with heaps of salt!

Further Reading

10 Minutes to pandas, and Essential Basic Functionality - Useful links that introduce you to Pandas and its library of vectorized*/cythonized functions.

Enhancing Performance - A primer from the documentation on enhancing standard Pandas operations

Are for-loops in pandas really bad? When should I care? - a detailed writeup by me on list comprehensions and their suitability for various operations (mainly ones involving non-numeric data)

When should I (not) want to use pandas apply() in my code? - apply is slow (but not as slow as the iter* family. There are, however, situations where one can (or should) consider apply as a serious alternative, especially in some GroupBy operations).

* Pandas string methods are "vectorized" in the sense that they are specified on the series but operate on each element. The underlying mechanisms are still iterative, because string operations are inherently hard to vectorize.

Why I Wrote this Answer

A common trend I notice from new users is to ask questions of the form "How can I iterate over my df to do X?". Showing code that calls iterrows() while doing something inside a for loop. Here is why. A new user to the library who has not been introduced to the concept of vectorization will likely envision the code that solves their problem as iterating over their data to do something. Not knowing how to iterate over a DataFrame, the first thing they do is Google it and end up here, at this question. They then see the accepted answer telling them how to, and they close their eyes and run this code without ever first questioning if iteration is the right thing to do.

The aim of this answer is to help new users understand that iteration is not necessarily the solution to every problem, and that better, faster and more idiomatic solutions could exist, and that it is worth investing time in exploring them. I'm not trying to start a war of iteration vs. vectorization, but I want new users to be informed when developing solutions to their problems with this library.


Note that there are important caveats with iterrows and itertuples. See this answer and pandas docs for more details.
This is the only answer that focuses on the idiomatic techniques one should use with pandas, making it the best answer for this question. Learning to get the right answer with the right code (instead of the right answer with the wrong code - i.e. inefficient, doesn't scale, too fit to specific data) is a big part of learning pandas (and data in general).
I think you are being unfair to the for loop, though, seeing as they are only a bit slower than list comprehension in my tests. The trick is to loop over zip(df['A'], df['B']) instead of df.iterrows().
Under List Comprehensions, the "iterating over multiple columns" example needs a caveat: DataFrame.values will convert every column to a common data type. DataFrame.to_numpy() does this too. Fortunately we can use zip with any number of columns.
@Dean I get this response quite often and it honestly confuses me. It's all about forming good habits. "My data is small and performance doesn't matter so my use of this antipattern can be excused" ..? When performance actually does matter one day, you'll thank yourself for having prepared the right tools in advance.
G
George

First consider if you really need to iterate over rows in a DataFrame. See this answer for alternatives.

If you still need to iterate over rows, you can use methods below. Note some important caveats which are not mentioned in any of the other answers.

DataFrame.iterrows() for index, row in df.iterrows(): print(row["c1"], row["c2"])

DataFrame.itertuples() for row in df.itertuples(index=True, name='Pandas'): print(row.c1, row.c2)

itertuples() is supposed to be faster than iterrows()

But be aware, according to the docs (pandas 0.24.2 at the moment):

iterrows: dtype might not match from row to row

Because iterrows returns a Series for each row, it does not preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). To preserve dtypes while iterating over the rows, it is better to use itertuples() which returns namedtuples of the values and which is generally much faster than iterrows()

iterrows: Do not modify rows

You should never modify something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect.

Use DataFrame.apply() instead:

    new_df = df.apply(lambda x: x * 2, axis = 1)

itertuples:

The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned.

See pandas docs on iteration for more details.


Just a small question from someone reading this thread so long after its completion: how df.apply() compares to itertuples in terms of efficiency?
Note: you can also say something like for row in df[['c1','c2']].itertuples(index=True, name=None): to include only certain columns in the row iterator.
Instead of getattr(row, "c1"), you can use just row.c1.
I am about 90% sure that if you use getattr(row, "c1") instead of row.c1, you lose any performance advantage of itertuples, and if you actually need to get to the property via a string, you should use iterrows instead.
I have stumbled upon this question because, although I knew there's split-apply-combine, I still really needed to iterate over a DataFrame (as the question states). Not everyone has the luxury to improve with numba and cython (the same docs say that "It’s always worth optimising in Python first"). I wrote this answer to help others avoid (sometimes frustrating) issues as none of the other answers mention these caveats. Misleading anyone or telling "that's the right thing to do" was never my intention. I have improved the answer.
c
cs95

You should use df.iterrows(). Though iterating row-by-row is not especially efficient since Series objects have to be created.


Is this faster than converting the DataFrame to a numpy array (via .values) and operating on the array directly? I have the same problem, but ended up converting to a numpy array and then using cython.
@vgoklani If iterating row-by-row is inefficient and you have a non-object numpy array then almost surely using the raw numpy array will be faster, especially for arrays with many rows. you should avoid iterating over rows unless you absolutely have to
I have done a bit of testing on the time consumption for df.iterrows(), df.itertuples(), and zip(df['a'], df['b']) and posted the result in the answer of another question: stackoverflow.com/a/34311080/2142098
e
e9t

While iterrows() is a good option, sometimes itertuples() can be much faster:

df = pd.DataFrame({'a': randn(1000), 'b': randn(1000),'N': randint(100, 1000, (1000)), 'x': 'x'})

%timeit [row.a * 2 for idx, row in df.iterrows()]
# => 10 loops, best of 3: 50.3 ms per loop

%timeit [row[1] * 2 for row in df.itertuples()]
# => 1000 loops, best of 3: 541 µs per loop

Much of the time difference in your two examples seems like it is due to the fact that you appear to be using label-based indexing for the .iterrows() command and integer-based indexing for the .itertuples() command.
For a finance data based dataframe(timestamp, and 4x float), itertuples is 19,57 times faster then iterrows on my machine. Only for a,b,c in izip(df["a"],df["b"],df["c"]: is almost equally fast.
Can you explain why it's faster?
@AbeMiessler iterrows() boxes each row of data into a Series, whereas itertuples()does not.
Note that the order of the columns is actually indeterminate, because df is created from a dictionary, so row[1] could refer to any of the columns. As it turns out though the times are roughly the same for the integer vs the float columns.
T
Tonechas

You can use the df.iloc function as follows:

for i in range(0, len(df)):
    print(df.iloc[i]['c1'], df.iloc[i]['c2'])

I know that one should avoid this in favor of iterrows or itertuples, but it would be interesting to know why. Any thoughts?
This is the only valid technique I know of if you want to preserve the data types, and also refer to columns by name. itertuples preserves data types, but gets rid of any name it doesn't like. iterrows does the opposite.
Spent hours trying to wade through the idiosyncrasies of pandas data structures to do something simple AND expressive. This results in readable code.
While for i in range(df.shape[0]) might speed this approach up a bit, it's still about 3.5x slower than the iterrows() approach above for my application.
On large Datafrmes this seems better as my_iter = df.itertuples() takes double the memory and a lot of time to copy it. same for iterrows().
c
cheekybastard

You can also use df.apply() to iterate over rows and access multiple columns for a function.

docs: DataFrame.apply()

def valuation_formula(x, y):
    return x * y * 0.5

df['price'] = df.apply(lambda row: valuation_formula(row['x'], row['y']), axis=1)

Is the df['price'] refers to a column name in the data frame? I am trying to create a dictionary with unique values from several columns in a csv file. I used your logic to create a dictionary with unique keys and values and got an error stating TypeError: ("'Series' objects are mutable, thus they cannot be hashed", u'occurred at index 0')
Code: df['Workclass'] = df.apply(lambda row: dic_update(row), axis=1) end of line id = 0 end of line def dic_update(row): if row not in dic: dic[row] = id id = id + 1
Having the axis default to 0 is the worst
Notice that apply doesn't "iteratite" over rows, rather it applies a function row-wise. The above code wouldn't work if you really do need iterations and indeces, for instance when comparing values across different rows (in that case you can do nothing but iterating).
this is the appropriate answer for pandas
P
Peter Mortensen

How to iterate efficiently

If you really have to iterate a Pandas dataframe, you will probably want to avoid using iterrows(). There are different methods and the usual iterrows() is far from being the best. itertuples() can be 100 times faster.

In short:

As a general rule, use df.itertuples(name=None). In particular, when you have a fixed number columns and less than 255 columns. See point (3)

Otherwise, use df.itertuples() except if your columns have special characters such as spaces or '-'. See point (2)

It is possible to use itertuples() even if your dataframe has strange columns by using the last example. See point (4)

Only use iterrows() if you cannot the previous solutions. See point (1)

Different methods to iterate over rows in a Pandas dataframe:

Generate a random dataframe with a million rows and 4 columns:

    df = pd.DataFrame(np.random.randint(0, 100, size=(1000000, 4)), columns=list('ABCD'))
    print(df)

1) The usual iterrows() is convenient, but damn slow:

start_time = time.clock()
result = 0
for _, row in df.iterrows():
    result += max(row['B'], row['C'])

total_elapsed_time = round(time.clock() - start_time, 2)
print("1. Iterrows done in {} seconds, result = {}".format(total_elapsed_time, result))

2) The default itertuples() is already much faster, but it doesn't work with column names such as My Col-Name is very Strange (you should avoid this method if your columns are repeated or if a column name cannot be simply converted to a Python variable name).:

start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
    result += max(row.B, row.C)

total_elapsed_time = round(time.clock() - start_time, 2)
print("2. Named Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))

3) The default itertuples() using name=None is even faster but not really convenient as you have to define a variable per column.

start_time = time.clock()
result = 0
for(_, col1, col2, col3, col4) in df.itertuples(name=None):
    result += max(col2, col3)

total_elapsed_time = round(time.clock() - start_time, 2)
print("3. Itertuples done in {} seconds, result = {}".format(total_elapsed_time, result))

4) Finally, the named itertuples() is slower than the previous point, but you do not have to define a variable per column and it works with column names such as My Col-Name is very Strange.

start_time = time.clock()
result = 0
for row in df.itertuples(index=False):
    result += max(row[df.columns.get_loc('B')], row[df.columns.get_loc('C')])

total_elapsed_time = round(time.clock() - start_time, 2)
print("4. Polyvalent Itertuples working even with special characters in the column name done in {} seconds, result = {}".format(total_elapsed_time, result))

Output:

         A   B   C   D
0       41  63  42  23
1       54   9  24  65
2       15  34  10   9
3       39  94  82  97
4        4  88  79  54
...     ..  ..  ..  ..
999995  48  27   4  25
999996  16  51  34  28
999997   1  39  61  14
999998  66  51  27  70
999999  51  53  47  99

[1000000 rows x 4 columns]

1. Iterrows done in 104.96 seconds, result = 66151519
2. Named Itertuples done in 1.26 seconds, result = 66151519
3. Itertuples done in 0.94 seconds, result = 66151519
4. Polyvalent Itertuples working even with special characters in the column name done in 2.94 seconds, result = 66151519

This article is a very interesting comparison between iterrows and itertuples


So WHY are these inefficient methods available in Pandas in the first place - if it's "common knowledge" that iterrows and itertuples should not be used - then why are they there, or rather, why are those methods not updated and made more efficient in the background by the maintainers of Pandas?
@Monty, it's not always possible to vectorize all operations.
P
Peter Mortensen

I was looking for How to iterate on rows and columns and ended here so:

for i, row in df.iterrows():
    for j, column in row.iteritems():
        print(column)

When possible, you should avoid using iterrows(). I explain why in the answer How to iterate efficiently
p
piRSquared

You can write your own iterator that implements namedtuple

from collections import namedtuple

def myiter(d, cols=None):
    if cols is None:
        v = d.values.tolist()
        cols = d.columns.values.tolist()
    else:
        j = [d.columns.get_loc(c) for c in cols]
        v = d.values[:, j].tolist()

    n = namedtuple('MyTuple', cols)

    for line in iter(v):
        yield n(*line)

This is directly comparable to pd.DataFrame.itertuples. I'm aiming at performing the same task with more efficiency.

For the given dataframe with my function:

list(myiter(df))

[MyTuple(c1=10, c2=100), MyTuple(c1=11, c2=110), MyTuple(c1=12, c2=120)]

Or with pd.DataFrame.itertuples:

list(df.itertuples(index=False))

[Pandas(c1=10, c2=100), Pandas(c1=11, c2=110), Pandas(c1=12, c2=120)]

A comprehensive test We test making all columns available and subsetting the columns.

def iterfullA(d):
    return list(myiter(d))

def iterfullB(d):
    return list(d.itertuples(index=False))

def itersubA(d):
    return list(myiter(d, ['col3', 'col4', 'col5', 'col6', 'col7']))

def itersubB(d):
    return list(d[['col3', 'col4', 'col5', 'col6', 'col7']].itertuples(index=False))

res = pd.DataFrame(
    index=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
    columns='iterfullA iterfullB itersubA itersubB'.split(),
    dtype=float
)

for i in res.index:
    d = pd.DataFrame(np.random.randint(10, size=(i, 10))).add_prefix('col')
    for j in res.columns:
        stmt = '{}(d)'.format(j)
        setp = 'from __main__ import d, {}'.format(j)
        res.at[i, j] = timeit(stmt, setp, number=100)

res.groupby(res.columns.str[4:-1], axis=1).plot(loglog=True);

https://i.stack.imgur.com/rt88e.png

https://i.stack.imgur.com/azbOF.png


For people who don't want to read the code: blue line is intertuples, orange line is a list of an iterator thru a yield block. interrows is not compared.
P
Pedro Lobito

To loop all rows in a dataframe you can use:

for x in range(len(date_example.index)):
    print date_example['Date'].iloc[x]

This is chained indexing. I do not recommend doing this.
@cs95 What would you recommend instead?
If you want to make this work, call df.columns.get_loc to get the integer index position of the date column (outside the loop), then use a single iloc indexing call inside.
c
cs95
 for ind in df.index:
     print df['c1'][ind], df['c2'][ind]

how is the performance of this option when used on a large dataframe (millions of rows for example)?
Honestly, I don’t know exactly, I think that in comparison with the best answer, the elapsed time will be about the same, because both cases use "for"-construction. But the memory may be different in some cases.
This is chained indexing. Do not use this!
S
Sachin

We have multiple options to do the same, lots of folks have shared their answers.

I found below two methods easy and efficient to do :

DataFrame.iterrows() DataFrame.itertuples()

Example:

 import pandas as pd
 inp = [{'c1':10, 'c2':100}, {'c1':11,'c2':110}, {'c1':12,'c2':120}]
 df = pd.DataFrame(inp)
 print (df)

 #With iterrows method 

 for index, row in df.iterrows():
     print(row["c1"], row["c2"])

 #With itertuples method

 for row in df.itertuples(index=True, name='Pandas'):
     print(row.c1, row.c2)

Note: itertuples() is supposed to be faster than iterrows()


This actually answers the question. +1
c
cs95

Sometimes a useful pattern is:

# Borrowing @KutalmisB df example
df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])
# The to_dict call results in a list of dicts
# where each row_dict is a dictionary with k:v pairs of columns:value for that row
for row_dict in df.to_dict(orient='records'):
    print(row_dict)

Which results in:

{'col1':1.0, 'col2':0.1}
{'col1':2.0, 'col2':0.2}

b
bug_spray

Update: cs95 has updated his answer to include plain numpy vectorization. You can simply refer to his answer.

cs95 shows that Pandas vectorization far outperforms other Pandas methods for computing stuff with dataframes.

I wanted to add that if you first convert the dataframe to a NumPy array and then use vectorization, it's even faster than Pandas dataframe vectorization, (and that includes the time to turn it back into a dataframe series).

If you add the following functions to cs95's benchmark code, this becomes pretty evident:

def np_vectorization(df):
    np_arr = df.to_numpy()
    return pd.Series(np_arr[:,0] + np_arr[:,1], index=df.index)

def just_np_vectorization(df):
    np_arr = df.to_numpy()
    return np_arr[:,0] + np_arr[:,1]

https://i.stack.imgur.com/L0u4A.png


P
Peter Mortensen

In short

Use vectorization if possible

If an operation can't be vectorized - use list comprehensions

If you need a single object representing the entire row - use itertuples

If the above is too slow - try swifter.apply

If it's still too slow - try a Cython routine

Benchmark

https://i.stack.imgur.com/ytaWK.png


Z
Zeitgeist

There is a way to iterate throw rows while getting a DataFrame in return, and not a Series. I don't see anyone mentioning that you can pass index as a list for the row to be returned as a DataFrame:

for i in range(len(df)):
    row = df.iloc[[i]]

Note the usage of double brackets. This returns a DataFrame with a single row.


This was very helpful for getting the nth largest row in a data frame after sorting. Thanks!
H
Herpes Free Engineer

To loop all rows in a dataframe and use values of each row conveniently, namedtuples can be converted to ndarrays. For example:

df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b'])

Iterating over the rows:

for row in df.itertuples(index=False, name='Pandas'):
    print np.asarray(row)

results in:

[ 1.   0.1]
[ 2.   0.2]

Please note that if index=True, the index is added as the first element of the tuple, which may be undesirable for some applications.


H
Hossein Kalbasi

For both viewing and modifying values, I would use iterrows(). In a for loop and by using tuple unpacking (see the example: i, row), I use the row for only viewing the value and use i with the loc method when I want to modify values. As stated in previous answers, here you should not modify something you are iterating over.

for i, row in df.iterrows():
    df_column_A = df.loc[i, 'A']
    if df_column_A == 'Old_Value':
        df_column_A = 'New_value'  

Here the row in the loop is a copy of that row, and not a view of it. Therefore, you should NOT write something like row['A'] = 'New_Value', it will not modify the DataFrame. However, you can use i and loc and specify the DataFrame to do the work.


P
Peter Mortensen

There are so many ways to iterate over the rows in Pandas dataframe. One very simple and intuitive way is:

df = pd.DataFrame({'A':[1, 2, 3], 'B':[4, 5, 6], 'C':[7, 8, 9]})
print(df)
for i in range(df.shape[0]):
    # For printing the second column
    print(df.iloc[i, 1])

    # For printing more than one columns
    print(df.iloc[i, [0, 2]])

F
François B.

The easiest way, use the apply function

def print_row(row):
   print row['c1'], row['c2']

df.apply(lambda row: print_row(row), axis=1)

J
JohnE

As many answers here correctly and clearly point out, you should not generally attempt to loop in Pandas, but rather should write vectorized code. But the question remains if you should ever write loops in Pandas, and if so the best way to loop in those situations.

I believe there is at least one general situation where loops are appropriate: when you need to calculate some function that depends on values in other rows in a somewhat complex manner. In this case, the looping code is often simpler, more readable, and less error prone than vectorized code. The looping code might even be faster, too.

I will attempt to show this with an example. Suppose you want to take a cumulative sum of a column, but reset it whenever some other column equals zero:

import pandas as pd
import numpy as np

df = pd.DataFrame( { 'x':[1,2,3,4,5,6], 'y':[1,1,1,0,1,1]  } )

#   x  y  desired_result
#0  1  1               1
#1  2  1               3
#2  3  1               6
#3  4  0               4
#4  5  1               9
#5  6  1              15

This is a good example where you could certainly write one line of Pandas to achieve this, although it's not especially readable, especially if you aren't fairly experienced with Pandas already:

df.groupby( (df.y==0).cumsum() )['x'].cumsum()

That's going to be fast enough for most situations, although you could also write faster code by avoiding the groupby, but it will likely be even less readable.

Alternatively, what if we write this as a loop? You could do something like the following with NumPy:

import numba as nb

@nb.jit(nopython=True)  # Optional
def custom_sum(x,y):
    x_sum = x.copy()
    for i in range(1,len(df)):
        if y[i] > 0: x_sum[i] = x_sum[i-1] + x[i]
    return x_sum

df['desired_result'] = custom_sum( df.x.to_numpy(), df.y.to_numpy() )

Admittedly, there's a bit of overhead there required to convert DataFrame columns to NumPy arrays, but the core piece of code is just one line of code that you could read even if you didn't know anything about Pandas or NumPy:

if y[i] > 0: x_sum[i] = x_sum[i-1] + x[i]

And this code is actually faster than the vectorized code. In some quick tests with 100,000 rows, the above is about 10x faster than the groupby approach. Note that one key to the speed there is numba, which is optional. Without the "@nb.jit" line, the looping code is actually about 10x slower than the groupby approach.

Clearly this example is simple enough that you would likely prefer the one line of pandas to writing a loop with its associated overhead. However, there are more complex versions of this problem for which the readability or speed of the NumPy/numba loop approach likely makes sense.


p
pythonic833

df.iterrows() returns tuple(a, b) where a is the index and b is the row.


P
Peter Mortensen

You can also do NumPy indexing for even greater speed ups. It's not really iterating but works much better than iteration for certain applications.

subset = row['c1'][0:5]
all = row['c1'][:]

You may also want to cast it to an array. These indexes/selections are supposed to act like NumPy arrays already, but I ran into issues and needed to cast

np.asarray(all)
imgs[:] = cv2.resize(imgs[:], (224,224) ) # Resize every image in an hdf5 file

g
gru

Disclaimer: Although here are so many answers which recommend not using an iterative (loop) approach (and I mostly agree), I would still see it as a reasonable approach for the following situation:

Extend dataframe with data from API

Let's say you have a large dataframe which contains incomplete user data. Now you have to extend this data with additional columns, for example the user's age and gender.

Both values have to be fetched from a backend API. I'm assuming the API doesn't provide a "batch" endpoint (which would accept multiple user IDs at once). Otherwise, you should rather call the API only once.

The costs (waiting time) for the network request surpass the iteration of the dataframe by far. We're talking about network roundtrip times of hundreds of milliseconds compared to the negligibly small gains in using alternative approaches to iterations.

1 expensive network request for each row

So in this case, I would absolutely prefer using an iterative approach. Although the network request is expensive, it is guaranteed being triggered only once for each row in the dataframe. Here is an example using DataFrame.iterrows:

Example

for index, row in users_df.iterrows():
  user_id = row['user_id']
  # trigger expensive network request once for each row
  response_dict = backend_api.get(f'/api/user-data/{user_id}')
  # extend dataframe with multiple data from response
  users_df.at[index, 'age'] = response_dict.get('age')
  users_df.at[index, 'gender'] = response_dict.get('gender')

m
mjr2000

This example uses iloc to isolate each digit in the data frame.

import pandas as pd

 a = [1, 2, 3, 4]
 b = [5, 6, 7, 8]

 mjr = pd.DataFrame({'a':a, 'b':b})

 size = mjr.shape

 for i in range(size[0]):
     for j in range(size[1]):
         print(mjr.iloc[i, j])

m
morganics

Some libraries (e.g. a Java interop library that I use) require values to be passed in a row at a time, for example, if streaming data. To replicate the streaming nature, I 'stream' my dataframe values one by one, I wrote the below, which comes in handy from time to time.

class DataFrameReader:
  def __init__(self, df):
    self._df = df
    self._row = None
    self._columns = df.columns.tolist()
    self.reset()
    self.row_index = 0

  def __getattr__(self, key):
    return self.__getitem__(key)

  def read(self) -> bool:
    self._row = next(self._iterator, None)
    self.row_index += 1
    return self._row is not None

  def columns(self):
    return self._columns

  def reset(self) -> None:
    self._iterator = self._df.itertuples()

  def get_index(self):
    return self._row[0]

  def index(self):
    return self._row[0]

  def to_dict(self, columns: List[str] = None):
    return self.row(columns=columns)

  def tolist(self, cols) -> List[object]:
    return [self.__getitem__(c) for c in cols]

  def row(self, columns: List[str] = None) -> Dict[str, object]:
    cols = set(self._columns if columns is None else columns)
    return {c : self.__getitem__(c) for c in self._columns if c in cols}

  def __getitem__(self, key) -> object:
    # the df index of the row is at index 0
    try:
        if type(key) is list:
            ix = [self._columns.index(key) + 1 for k in key]
        else:
            ix = self._columns.index(key) + 1
        return self._row[ix]
    except BaseException as e:
        return None

  def __next__(self) -> 'DataFrameReader':
    if self.read():
        return self
    else:
        raise StopIteration

  def __iter__(self) -> 'DataFrameReader':
    return self

Which can be used:

for row in DataFrameReader(df):
  print(row.my_column_name)
  print(row.to_dict())
  print(row['my_column_name'])
  print(row.tolist())

And preserves the values/ name mapping for the rows being iterated. Obviously, is a lot slower than using apply and Cython as indicated above, but is necessary in some circumstances.


T
Timbus Calin

Along with the great answers in this post I am going to propose Divide and Conquer approach, I am not writing this answer to abolish the other great answers but to fulfill them with another approach which was working efficiently for me. It has two steps of splitting and merging the pandas dataframe:

PROS of Divide and Conquer:

You don't need to use vectorization or any other methods to cast the type of your dataframe into another type

You don't need to Cythonize your code which normally takes extra time from you

Both iterrows() and itertuples() in my case were having the same performance over entire dataframe

Depends on your choice of slicing index, you will be able to exponentially quicken the iteration. The higher index, the quicker your iteration process.

CONS of Divide and Conquer:

You shouldn't have dependency over the iteration process to the same dataframe and different slice. Meaning if you want to read or write from other slice, it maybe difficult to do that.

=================== Divide and Conquer Approach =================

Step 1: Splitting/Slicing

In this step, we are going to divide the iteration over the entire dataframe. Think that you are going to read a csv file into pandas df then iterate over it. In may case I have 5,000,000 records and I am going to split it into 100,000 records.

NOTE: I need to reiterate as other runtime analysis explained in the other solutions in this page, "number of records" has exponential proportion of "runtime" on search on the df. Based on the benchmark on my data here are the results:

Number of records | Iteration per second
========================================
100,000           | 500 it/s
500,000           | 200 it/s
1,000,000         | 50 it/s
5,000,000         | 20 it/s

Step 2: Merging

This is going to be an easy step, just merge all the written csv files into one dataframe and write it into a bigger csv file.

Here is the sample code:

# Step 1 (Splitting/Slicing)
import pandas as pd
df_all = pd.read_csv('C:/KtV.csv')
df_index = 100000
df_len = len(df)
for i in range(df_len // df_index + 1):
    lower_bound = i * df_index 
    higher_bound = min(lower_bound + df_index, df_len)
    # splitting/slicing df (make sure to copy() otherwise it will be a view
    df = df_all[lower_bound:higher_bound].copy()
    '''
    write your iteration over the sliced df here
    using iterrows() or intertuples() or ...
    '''
    # writing into csv files
    df.to_csv('C:/KtV_prep_'+str(i)+'.csv')



# Step 2 (Merging)
filename='C:/KtV_prep_'
df = (pd.read_csv(f) for f in [filename+str(i)+'.csv' for i in range(ktv_len // ktv_index + 1)])
df_prep_all = pd.concat(df)
df_prep_all.to_csv('C:/KtV_prep_all.csv')

Reference:

Efficient way of iteration over datafreame

Concatenate csv files into one Pandas Dataframe


P
Peter Mortensen

As the accepted answer states, the fastest way to apply a function over rows is to use a vectorized function, the so-called NumPy ufuncs (universal functions).

But what should you do when the function you want to apply isn't already implemented in NumPy?

Well, using the vectorize decorator from numba, you can easily create ufuncs directly in Python like this:

from numba import vectorize, float64

@vectorize([float64(float64)])
def f(x):
    #x is your line, do something with it, and return a float

The documentation for this function is here: Creating NumPy universal functions


E
Ernesto Elsäßer

Probably the most elegant solution (but certainly not the most efficient):

for row in df.values:
    c2 = row[1]
    print(row)
    # ...

for c1, c2 in df.values:
    # ...

Note that:

the documentation explicitly recommends to use .to_numpy() instead

the produced NumPy array will have a dtype that fits all columns, in the worst case object

there are good reasons not to use a loop in the first place

Still, I think this option should be included here, as a straight-forward solution to a (one should think) trivial problem.