ChatGPT解决这个技术问题 Extra ChatGPT

Getting distance between two points based on latitude/longitude

I tried implementing this formula: http://andrew.hedges.name/experiments/haversine/ The aplet does good for the two points I am testing:

https://i.stack.imgur.com/FGED4.png

Yet my code is not working.

from math import sin, cos, sqrt, atan2

R = 6373.0

lat1 = 52.2296756
lon1 = 21.0122287
lat2 = 52.406374
lon2 = 16.9251681

dlon = lon2 - lon1
dlat = lat2 - lat1
a = (sin(dlat/2))**2 + cos(lat1) * cos(lat2) * (sin(dlon/2))**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
distance = R * c

print "Result", distance
print "Should be", 278.546

The distance it returns is 5447.05546147. Why?


j
jrreda

Update: 04/2018: Vincenty distance is deprecated since GeoPy version 1.13 - you should use geopy.distance.distance() instead!

The answers above are based on the Haversine formula, which assumes the earth is a sphere, which results in errors of up to about 0.5% (according to help(geopy.distance)). Vincenty distance uses more accurate ellipsoidal models such as WGS-84, and is implemented in geopy. For example,

import geopy.distance

coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)

print geopy.distance.geodesic(coords_1, coords_2).km

will print the distance of 279.352901604 kilometers using the default ellipsoid WGS-84. (You can also choose .miles or one of several other distance units).


Thanks. Can you please update your answer with coordinates I provided in question instead of Newport and Cleveland. It will give a better understanding to future readers.
The arbitrary locations of Newport and Cleveland come from the example geopy documentation in the PyPI listing: pypi.python.org/pypi/geopy
I had to modify Kurt Peek's answer to this: Capitalization required: print geopy.distance.VincentyDistance(coords_1, coords_2).km 279.352901604
You should probably use geopy.distance.distance(…) in code which is an alias of the currently best (=most accurate) distance formula. (Vincenty at the moment.)
Using geopy.distance.vincenty in geopy-1.18.1 outputs: Vincenty is deprecated and is going to be removed in geopy 2.0. Use geopy.distance.geodesic (or the default geopy.distance.distance) instead, which is more accurate and always converges.
M
Michael0x2a

Edit: Just as a note, if you just need a quick and easy way of finding the distance between two points, I strongly recommend using the approach described in Kurt's answer below instead of re-implementing Haversine -- see his post for rationale.

This answer focuses just on answering the specific bug OP ran into.

It's because in Python, all the trig functions use radians, not degrees.

You can either convert the numbers manually to radians, or use the radians function from the math module:

from math import sin, cos, sqrt, atan2, radians

# approximate radius of earth in km
R = 6373.0

lat1 = radians(52.2296756)
lon1 = radians(21.0122287)
lat2 = radians(52.406374)
lon2 = radians(16.9251681)

dlon = lon2 - lon1
dlat = lat2 - lat1

a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))

distance = R * c

print("Result:", distance)
print("Should be:", 278.546, "km")

The distance is now returning the correct value of 278.545589351 km.


this is true in any programming language, and also in differential calculus. using degrees is the exception, and only used in human speech.
Word to the wise, this formula requires all degrees be positive. radians(abs(52.123)) should do the trick...
Are you sure about all degrees (angles?) being positive? I think this is wrong. Consider if lat1, lon1 = 10, 10 (degrees) and lat2, lon2 = -10, -10 (degrees). By adding an abs() around the degrees, the distance would be zero, which is incorrect. Perhaps you meant to take the absolute value of dlon and/or dlat, but if you look at the dlon, dlat values in the calculation of a, sine is an even function, and cosine squared is an even function, so I don't see any benefit to taking an absolute value of dlat or dlon, either.
Just wondering if the distance above is the arc distance or plane distance between two locations?
There was a breaking change Removed geopy.distance.vincenty, use geopy.distance.geodesic instead. Would you update your answer?
B
Boris Verkhovskiy

For people (like me) coming here via search engine and just looking for a solution which works out of the box, I recommend installing mpu. Install it via pip install mpu --user and use it like this to get the haversine distance:

import mpu

# Point one
lat1 = 52.2296756
lon1 = 21.0122287

# Point two
lat2 = 52.406374
lon2 = 16.9251681

# What you were looking for
dist = mpu.haversine_distance((lat1, lon1), (lat2, lon2))
print(dist)  # gives 278.45817507541943.

An alternative package is gpxpy.

If you don't want dependencies, you can use:

import math


def distance(origin, destination):
    """
    Calculate the Haversine distance.

    Parameters
    ----------
    origin : tuple of float
        (lat, long)
    destination : tuple of float
        (lat, long)

    Returns
    -------
    distance_in_km : float

    Examples
    --------
    >>> origin = (48.1372, 11.5756)  # Munich
    >>> destination = (52.5186, 13.4083)  # Berlin
    >>> round(distance(origin, destination), 1)
    504.2
    """
    lat1, lon1 = origin
    lat2, lon2 = destination
    radius = 6371  # km

    dlat = math.radians(lat2 - lat1)
    dlon = math.radians(lon2 - lon1)
    a = (math.sin(dlat / 2) * math.sin(dlat / 2) +
         math.cos(math.radians(lat1)) * math.cos(math.radians(lat2)) *
         math.sin(dlon / 2) * math.sin(dlon / 2))
    c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
    d = radius * c

    return d


if __name__ == '__main__':
    import doctest
    doctest.testmod()

The other alternative package is haversine

from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles

They claim to have performance optimization for distances between all points in two vectors

from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])

Is there a way to change the given Highet of one of the points?
You could simply add the height difference to the distance. I would not do that, though.
"Lyon, Paris, 392.2172595594006 km", wow the last digit is not even the size of an atom of hydrogen. Very accurate!
wow can you hep me ? , is posible obtain the corresponding distance in decimal degrees over a custom point in map ?, ex : get the decimal degree for point x, y like tha distance in meters is 300 mts
R
Ramy M. Mousa

I arrived at a much simpler and robust solution which is using geodesic from geopy package since you'll be highly likely using it in your project anyways so no extra package installation needed.

Here is my solution:

from geopy.distance import geodesic


origin = (30.172705, 31.526725)  # (latitude, longitude) don't confuse
dist = (30.288281, 31.732326)

print(geodesic(origin, dist).meters)  # 23576.805481751613
print(geodesic(origin, dist).kilometers)  # 23.576805481751613
print(geodesic(origin, dist).miles)  # 14.64994773134371

geopy


Thanks buddy for mentioning that latitude is first then longitude. Cheers!
R
Romil Patel

There are multiple ways to calculate the distance based on the coordinates i.e latitude and longitude

Install and import

from geopy import distance
from math import sin, cos, sqrt, atan2, radians
from sklearn.neighbors import DistanceMetric
import osrm
import numpy as np

Define coordinates

lat1, lon1, lat2, lon2, R = 20.9467,72.9520, 21.1702, 72.8311, 6373.0
coordinates_from = [lat1, lon1]
coordinates_to = [lat2, lon2]

Using haversine

dlon = radians(lon2) - radians(lon1)
dlat = radians(lat2) - radians(lat1)
    
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a), sqrt(1 - a))
    
distance_haversine_formula = R * c
print('distance using haversine formula: ', distance_haversine_formula)

Using haversine with sklearn

dist = DistanceMetric.get_metric('haversine')
    
X = [[radians(lat1), radians(lon1)], [radians(lat2), radians(lon2)]]
distance_sklearn = R * dist.pairwise(X)
print('distance using sklearn: ', np.array(distance_sklearn).item(1))

Using OSRM

osrm_client = osrm.Client(host='http://router.project-osrm.org')
coordinates_osrm = [[lon1, lat1], [lon2, lat2]] # note that order is lon, lat
    
osrm_response = osrm_client.route(coordinates=coordinates_osrm, overview=osrm.overview.full)
dist_osrm = osrm_response.get('routes')[0].get('distance')/1000 # in km
print('distance using OSRM: ', dist_osrm)

Using geopy

distance_geopy = distance.distance(coordinates_from, coordinates_to).km
print('distance using geopy: ', distance_geopy)
    
distance_geopy_great_circle = distance.great_circle(coordinates_from, coordinates_to).km 
print('distance using geopy great circle: ', distance_geopy_great_circle)

Output

distance using haversine formula:  26.07547017310917
distance using sklearn:  27.847882224769783
distance using OSRM:  33.091699999999996
distance using geopy:  27.7528030550408
distance using geopy great circle:  27.839182219511834

S
Sudhirln92
import numpy as np


def Haversine(lat1,lon1,lat2,lon2, **kwarg):
    """
    This uses the ‘haversine’ formula to calculate the great-circle distance between two points – that is, 
    the shortest distance over the earth’s surface – giving an ‘as-the-crow-flies’ distance between the points 
    (ignoring any hills they fly over, of course!).
    Haversine
    formula:    a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
    c = 2 ⋅ atan2( √a, √(1−a) )
    d = R ⋅ c
    where   φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km);
    note that angles need to be in radians to pass to trig functions!
    """
    R = 6371.0088
    lat1,lon1,lat2,lon2 = map(np.radians, [lat1,lon1,lat2,lon2])

    dlat = lat2 - lat1
    dlon = lon2 - lon1
    a = np.sin(dlat/2)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2) **2
    c = 2 * np.arctan2(a**0.5, (1-a)**0.5)
    d = R * c
    return round(d,4)

Hi do you think there is a way to do the calcul in getting data directly from the template ?
R
Ransaka Ravihara

You can use Uber's H3,point_dist() function to compute the spherical distance between two (lat, lng) points. We can set return unit ('km', 'm', or 'rads'). The default unit is Km.

Example :

import h3

coords_1 = (52.2296756, 21.0122287)
coords_2 = (52.406374, 16.9251681)
distance = h3.point_dist(coords_1, coords_2, unit='m') # to get distance in meters

Hope this will usefull!


s
swatchai

In the year 2022, one can post live javascript code that solves this problem using more recent javascript library. The general benefit is that the users can run and see the result on the web page that runs on modern devices.

// Using WGS84 ellipsoid model for computation var geod84 = geodesic.Geodesic.WGS84; // Input data lat1 = 52.2296756; lon1 = 21.0122287; lat2 = 52.406374; lon2 = 16.9251681; // Do the classic `geodetic inversion` computatioin geod84inv = geod84.Inverse(lat1, lon1, lat2, lon2); // Present the solution (only the geodetic distance) console.log("The distance is " + (geod84inv.s12/1000).toFixed(5) + " km.");


s
swatchai

In the year 2022, one can post mixed javascript+python code that solves this problem using more recent python library, namely, geographiclib. The general benefit is that the users can run and see the result on the web page that runs on modern devices.

async function main(){ let pyodide = await loadPyodide(); await pyodide.loadPackage(["micropip"]); console.log(pyodide.runPythonAsync(` import micropip await micropip.install('geographiclib') from geographiclib.geodesic import Geodesic lat1 = 52.2296756; lon1 = 21.0122287; lat2 = 52.406374; lon2 = 16.9251681; ans = Geodesic.WGS84.Inverse(lat1, lon1, lat2, lon2) dkm = ans["s12"] / 1000 print("Geodesic solution", ans) print(f"Distance = {dkm:.4f} km.") `)); } main();


L
Luisa Fernanda Velasquez Camac

The most simple way is with haversine package.


import haversine as hs


coord_1 = (lat, lon)
coord_2 = (lat, lon)
x = hs.haversine(coord_1,coord_2)
print(f'The distance is {x} km')

s
swatchai

Another intereting use of mixed javascript+python through pyodide and webassembly implementation to obtain the solution using Python's libraries pandas+geographiclib is also feasible. I made extra effort using pandas to prep the input data and when output is available, append them to the solution column. Pandas provides many useful features for input/output for common needs. Its method toHtml is handy to present the final solution on the web page

EDIT I found that the execution of the code in this answer is not successful on some iphone and ipad devices. But on newer midrange Android devices will run fine. I will find a way to correct this issue and update this soon.

My sidenote, I am aware that my answers are not direct answer to the OP question like some other answers. But lately the outside world said that many answers in StackOvereflow are outdated and tried to steer people away from here.

async function main(){ let pyodide = await loadPyodide(); await pyodide.loadPackage(["pandas", "micropip"]); console.log(pyodide.runPythonAsync(` import micropip import pandas as pd import js print("Pandas version: " + pd.__version__) await micropip.install('geographiclib') from geographiclib.geodesic import Geodesic import geographiclib as gl print("Geographiclib version: " + gl.__version__) data = {'Description': ['Answer to the question', 'Bangkok to Tokyo'], 'From_long': [21.0122287, 100.6], 'From_lat': [52.2296756, 13.8], 'To_long': [16.9251681, 139.76], 'To_lat': [52.406374, 35.69], 'Distance_km': [0, 0]} df1 = pd.DataFrame(data) collist = ['Description','From_long','From_lat','To_long','To_lat'] div2 = js.document.createElement("div") div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=True) div2.innerHTML = div2content js.document.body.append(div2) arr="by Swatchai" def dkm(frLat,frLon,toLat,toLon): print("frLon,frLat,toLon,toLat:", frLon, "|", frLat, "|", toLon, "|", toLat) dist = Geodesic.WGS84.Inverse(frLat, frLon, toLat, toLon) return dist["s12"] / 1000 collist = ['Description','From_long','From_lat','To_long','To_lat','Distance_km'] dist = [] for ea in zip(df1['From_lat'].values, df1['From_long'].values, df1['To_lat'].values, df1['To_long'].values): ans = dkm(*ea) print("ans=", ans) dist.append(ans) df1['Distance_km'] = dist # Update content div2content = df1.to_html(buf=None, columns=collist, col_space=None, header=True, index=False) div2.innerHTML = div2content js.document.body.append(div2) # Using Haversine Formula from math import sin, cos, sqrt, atan2, radians, asin # approximate radius of earth in km from wikipedia R = 6371 lat1 = radians(52.2296756) lon1 = radians(21.0122287) lat2 = radians(52.406374) lon2 = radians(16.9251681) # https://en.wikipedia.org/wiki/Haversine_formula def hav(angrad): return (1-cos(angrad))/2 h = hav(lat2-lat1)+cos(lat2)*cos(lat1)*hav(lon2-lon1) dist2 = 2*R*asin(sqrt(h)) print(f"Distance by haversine formula = {dist2:8.6f} km.") `)); } main(); Pyodide implementation


关注公众号,不定期副业成功案例分享
Follow WeChat

Success story sharing

Want to stay one step ahead of the latest teleworks?

Subscribe Now