I would like to plot y1 and y2 in the same plot.
x <- seq(-2, 2, 0.05)
y1 <- pnorm(x)
y2 <- pnorm(x, 1, 1)
plot(x, y1, type = "l", col = "red")
plot(x, y2, type = "l", col = "green")
But when I do it like this, they are not plotted in the same plot together.
In Matlab one can do hold on
, but does anyone know how to do this in R?
?curve
. Use add=TRUE
.
lines()
or points()
will add to the existing graph, but will not create a new window. So you'd need to do
plot(x,y1,type="l",col="red")
lines(x,y2,col="green")
You can also use par
and plot on the same graph but different axis. Something as follows:
plot( x, y1, type="l", col="red" )
par(new=TRUE)
plot( x, y2, type="l", col="green" )
If you read in detail about par
in R
, you will be able to generate really interesting graphs. Another book to look at is Paul Murrel's R Graphics.
xlab="", ylab="", ...
and a few others in the second plot
.
When constructing multilayer plots one should consider ggplot
package. The idea is to create a graphical object with basic aesthetics and enhance it incrementally.
ggplot
style requires data to be packed in data.frame
.
# Data generation
x <- seq(-2, 2, 0.05)
y1 <- pnorm(x)
y2 <- pnorm(x,1,1)
df <- data.frame(x,y1,y2)
Basic solution:
require(ggplot2)
ggplot(df, aes(x)) + # basic graphical object
geom_line(aes(y=y1), colour="red") + # first layer
geom_line(aes(y=y2), colour="green") # second layer
Here + operator
is used to add extra layers to basic object.
With ggplot
you have access to graphical object on every stage of plotting. Say, usual step-by-step setup can look like this:
g <- ggplot(df, aes(x))
g <- g + geom_line(aes(y=y1), colour="red")
g <- g + geom_line(aes(y=y2), colour="green")
g
g
produces the plot, and you can see it at every stage (well, after creation of at least one layer). Further enchantments of the plot are also made with created object. For example, we can add labels for axises:
g <- g + ylab("Y") + xlab("X")
g
Final g
looks like:
https://i.stack.imgur.com/FsPps.png
UPDATE (2013-11-08):
As pointed out in comments, ggplot
's philosophy suggests using data in long format. You can refer to this answer in order to see the corresponding code.
ggplot
handles this more naturally than the "wide" format you use.
ggplot
's philosophy...
I think that the answer you are looking for is:
plot(first thing to plot)
plot(second thing to plot,add=TRUE)
"add" is not a graphical parameter
warning then just prints the second plot over the first one.
"add" is not a graphical parameter
. My R is R version 3.2.3 (2015-12-10)
. You could use par(new=TRUE)
command between these plots.
Use the matplot
function:
matplot(x, cbind(y1,y2),type="l",col=c("red","green"),lty=c(1,1))
use this if y1
and y2
are evaluated at the same x
points. It scales the Y-axis to fit whichever is bigger (y1
or y2
), unlike some of the other answers here that will clip y2
if it gets bigger than y1
(ggplot solutions mostly are okay with this).
Alternatively, and if the two lines don't have the same x-coordinates, set the axis limits on the first plot and add:
x1 <- seq(-2, 2, 0.05)
x2 <- seq(-3, 3, 0.05)
y1 <- pnorm(x1)
y2 <- pnorm(x2,1,1)
plot(x1,y1,ylim=range(c(y1,y2)),xlim=range(c(x1,x2)), type="l",col="red")
lines(x2,y2,col="green")
Am astonished this Q is 4 years old and nobody has mentioned matplot
or x/ylim
...
tl;dr: You want to use curve
(with add=TRUE
) or lines
.
I disagree with par(new=TRUE)
because that will double-print tick-marks and axis labels. Eg
https://i.stack.imgur.com/xx8e1.png
The output of plot(sin); par(new=T); plot( function(x) x**2 )
.
Look how messed up the vertical axis labels are! Since the ranges are different you would need to set ylim=c(lowest point between the two functions, highest point between the two functions)
, which is less easy than what I'm about to show you---and way less easy if you want to add not just two curves, but many.
What always confused me about plotting is the difference between curve
and lines
. (If you can't remember that these are the names of the two important plotting commands, just sing it.)
Here's the big difference between curve and lines.
curve
will plot a function, like curve(sin)
. lines
plots points with x and y values, like: lines( x=0:10, y=sin(0:10) )
.
And here's a minor difference: curve
needs to be called with add=TRUE
for what you're trying to do, while lines
already assumes you're adding to an existing plot.
https://i.stack.imgur.com/VD8Cu.png
Here's the result of calling plot(0:2); curve(sin)
.
Behind the scenes, check out methods(plot)
. And check body( plot.function )[[5]]
. When you call plot(sin)
R figures out that sin
is a function (not y values) and uses the plot.function
method, which ends up calling curve
. So curve
is the tool meant to handle functions.
if you want to split the plot into two columns (2 plots next to each other), you can do it like this:
par(mfrow=c(1,2))
plot(x)
plot(y)
As described by @redmode, you may plot the two lines in the same graphical device using ggplot
. In that answer the data were in a 'wide' format. However, when using ggplot
it is generally most convenient to keep the data in a data frame in a 'long' format. Then, by using different 'grouping variables' in the aes
thetics arguments, properties of the line, such as linetype or colour, will vary according to the grouping variable, and corresponding legends will appear.
In this case, we can use the colour
aessthetics, which matches colour of the lines to different levels of a variable in the data set (here: y1 vs y2). But first we need to melt the data from wide to long format, using e.g. the function 'melt' from reshape2
package. Other methods to reshape the data are described here: Reshaping data.frame from wide to long format.
library(ggplot2)
library(reshape2)
# original data in a 'wide' format
x <- seq(-2, 2, 0.05)
y1 <- pnorm(x)
y2 <- pnorm(x, 1, 1)
df <- data.frame(x, y1, y2)
# melt the data to a long format
df2 <- melt(data = df, id.vars = "x")
# plot, using the aesthetics argument 'colour'
ggplot(data = df2, aes(x = x, y = value, colour = variable)) + geom_line()
https://i.stack.imgur.com/zZldE.png
If you are using base graphics (i.e. not lattice/ grid graphics), then you can mimic MATLAB's hold on feature by using the points/lines/polygons functions to add additional details to your plots without starting a new plot. In the case of a multiplot layout, you can use par(mfg=...)
to pick which plot you add things to.
You can use points for the overplot, that is.
plot(x1, y1,col='red')
points(x2,y2,col='blue')
Idiomatic Matlab plot(x1,y1,x2,y2)
can be translated in R with ggplot2
for example in this way:
x1 <- seq(1,10,.2)
df1 <- data.frame(x=x1,y=log(x1),type="Log")
x2 <- seq(1,10)
df2 <- data.frame(x=x2,y=cumsum(1/x2),type="Harmonic")
df <- rbind(df1,df2)
library(ggplot2)
ggplot(df)+geom_line(aes(x,y,colour=type))
https://i.stack.imgur.com/Bf4Sp.png
Inspired by Tingting Zhao's Dual line plots with different range of x-axis Using ggplot2.
Rather than keeping the values to be plotted in an array, store them in a matrix. By default the entire matrix will be treated as one data set. However if you add the same number of modifiers to the plot, e.g. the col(), as you have rows in the matrix, R will figure out that each row should be treated independently. For example:
x = matrix( c(21,50,80,41), nrow=2 )
y = matrix( c(1,2,1,2), nrow=2 )
plot(x, y, col("red","blue")
This should work unless your data sets are of differing sizes.
You could use the ggplotly()
function from the plotly package to turn any of the gggplot2 examples here into an interactive plot, but I think this sort of plot is better without ggplot2:
# call Plotly and enter username and key
library(plotly)
x <- seq(-2, 2, 0.05)
y1 <- pnorm(x)
y2 <- pnorm(x, 1, 1)
plot_ly(x = x) %>%
add_lines(y = y1, color = I("red"), name = "Red") %>%
add_lines(y = y2, color = I("green"), name = "Green")
https://i.stack.imgur.com/0Qjjl.png
You can also create your plot using ggvis:
library(ggvis)
x <- seq(-2, 2, 0.05)
y1 <- pnorm(x)
y2 <- pnorm(x,1,1)
df <- data.frame(x, y1, y2)
df %>%
ggvis(~x, ~y1, stroke := 'red') %>%
layer_paths() %>%
layer_paths(data = df, x = ~x, y = ~y2, stroke := 'blue')
This will create the following plot:
https://i.stack.imgur.com/TWfYW.png
Using plotly
(adding solution from plotly
with primary and secondary y axis- It seems to be missing):
library(plotly)
x <- seq(-2, 2, 0.05)
y1 <- pnorm(x)
y2 <- pnorm(x, 1, 1)
df=cbind.data.frame(x,y1,y2)
plot_ly(df) %>%
add_trace(x=~x,y=~y1,name = 'Line 1',type = 'scatter',mode = 'lines+markers',connectgaps = TRUE) %>%
add_trace(x=~x,y=~y2,name = 'Line 2',type = 'scatter',mode = 'lines+markers',connectgaps = TRUE,yaxis = "y2") %>%
layout(title = 'Title',
xaxis = list(title = "X-axis title"),
yaxis2 = list(side = 'right', overlaying = "y", title = 'secondary y axis', showgrid = FALSE, zeroline = FALSE))
Screenshot from working demo:
https://i.stack.imgur.com/u82W3.png
Error in library(plotly) : there is no package called ‘plotly’
why?
plotly
? You need to install the package using install.packages("plotly")
command.
we can also use lattice library
library(lattice)
x <- seq(-2,2,0.05)
y1 <- pnorm(x)
y2 <- pnorm(x,1,1)
xyplot(y1 + y2 ~ x, ylab = "y1 and y2", type = "l", auto.key = list(points = FALSE,lines = TRUE))
For specific colors
xyplot(y1 + y2 ~ x,ylab = "y1 and y2", type = "l", auto.key = list(points = F,lines = T), par.settings = list(superpose.line = list(col = c("red","green"))))
https://i.stack.imgur.com/rEmQF.png
Success story sharing
plot(sin); curve(cos, add=TRUE)
.