ChatGPT解决这个技术问题 Extra ChatGPT

Save plot to image file instead of displaying it using Matplotlib

I am writing a quick-and-dirty script to generate plots on the fly. I am using the code below (from Matplotlib documentation) as a starting point:

from pylab import figure, axes, pie, title, show

# Make a square figure and axes
figure(1, figsize=(6, 6))
ax = axes([0.1, 0.1, 0.8, 0.8])

labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
fracs = [15, 30, 45, 10]

explode = (0, 0.05, 0, 0)
pie(fracs, explode=explode, labels=labels, autopct='%1.1f%%', shadow=True)
title('Raining Hogs and Dogs', bbox={'facecolor': '0.8', 'pad': 5})

show()  # Actually, don't show, just save to foo.png

I don't want to display the plot on a GUI, instead, I want to save the plot to a file (say foo.png), so that, for example, it can be used in batch scripts. How do I do that?

Many of the answers lower down the page mention plt.close(fig) which is especially important in big loops. Otherwise the figures remain open and waiting in memory and all open figures will be shown upon executing plt.show()

M
Mateen Ulhaq

When using matplotlib.pyplot.savefig, the file format can be specified by the extension:

from matplotlib import pyplot as plt

plt.savefig('foo.png')
plt.savefig('foo.pdf')

That gives a rasterized or vectorized output respectively. In addition, there is sometimes undesirable whitespace around the image, which can be removed with:

plt.savefig('foo.png', bbox_inches='tight')

Note that if showing the plot, plt.show() should follow plt.savefig(); otherwise, the file image will be blank.


Can someone explain why showing before saving will result in a saved blank image?
@SilentCloud calling show() clears the plot. You have to save it before but there are other options too for this.
D
Demis

As others have said, plt.savefig() or fig1.savefig() is indeed the way to save an image.

However I've found that in certain cases the figure is always shown. (eg. with Spyder having plt.ion(): interactive mode = On.) I work around this by forcing the closing of the figure window in my giant loop with plt.close(figure_object) (see documentation), so I don't have a million open figures during the loop:

import matplotlib.pyplot as plt
fig, ax = plt.subplots( nrows=1, ncols=1 )  # create figure & 1 axis
ax.plot([0,1,2], [10,20,3])
fig.savefig('path/to/save/image/to.png')   # save the figure to file
plt.close(fig)    # close the figure window

You should be able to re-open the figure later if needed to with fig.show() (didn't test myself).


Note that the names ax/fig/plt are made up variable names - call them whatever you want. Either way, they contain Objects. You can see what objects subplots returns here: matplotlib.org/3.2.1/api/_as_gen/… , and what the pyplot module is here: matplotlib.org/tutorials/introductory/pyplot.html .
P
Peter Mortensen

The solution is:

pylab.savefig('foo.png')

pylab is not defined
D
Demis

Just found this link on the MatPlotLib documentation addressing exactly this issue: http://matplotlib.org/faq/howto_faq.html#generate-images-without-having-a-window-appear

They say that the easiest way to prevent the figure from popping up is to use a non-interactive backend (eg. Agg), via matplotib.use(<backend>), eg:

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.savefig('myfig')

I still personally prefer using plt.close( fig ), since then you have the option to hide certain figures (during a loop), but still display figures for post-loop data processing. It is probably slower than choosing a non-interactive backend though - would be interesting if someone tested that.

UPDATE: for Spyder, you usually can't set the backend in this way (Because Spyder usually loads matplotlib early, preventing you from using matplotlib.use()).

Instead, use plt.switch_backend('Agg'), or Turn off "enable support" in the Spyder prefs and run the matplotlib.use('Agg') command yourself.

From these two hints: one, two


This works really well for situations where you do not have a set display. Using another backend with .plot() will throw an error if os.environ['DISPLAY'] is not set correctly.
thanks. this works and very helpful for production servers where there is no internet connection and need system admin to install any packages.
I like the tutorial the matplotlib site has for the description/definition of "backends": matplotlib.org/tutorials/introductory/…
this does not work, It makes the code crash with the following error: Process finished with exit code -1073741571 (0xC00000FD)
What exactly did you try?
P
Peter Mortensen

If you don't like the concept of the "current" figure, do:

import matplotlib.image as mpimg

img = mpimg.imread("src.png")
mpimg.imsave("out.png", img)

Doesn't this just copy src.png to out.png?
That's just an example, that shows if you have an image object (img), then you can save it into file with .imsave() method.
@wonder.mice would help to show how to create an image without using the current figure.
@wonder.mice Thanks for this example, it's the first one that showed me how to save an image object to .png.
@scry You don't always need to create an image, sometimes you try out some code and want a visual output, it is handy in such occasions.
V
Victor Juliet
import datetime
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt

# Create the PdfPages object to which we will save the pages:
# The with statement makes sure that the PdfPages object is closed properly at
# the end of the block, even if an Exception occurs.
with PdfPages('multipage_pdf.pdf') as pdf:
    plt.figure(figsize=(3, 3))
    plt.plot(range(7), [3, 1, 4, 1, 5, 9, 2], 'r-o')
    plt.title('Page One')
    pdf.savefig()  # saves the current figure into a pdf page
    plt.close()

    plt.rc('text', usetex=True)
    plt.figure(figsize=(8, 6))
    x = np.arange(0, 5, 0.1)
    plt.plot(x, np.sin(x), 'b-')
    plt.title('Page Two')
    pdf.savefig()
    plt.close()

    plt.rc('text', usetex=False)
    fig = plt.figure(figsize=(4, 5))
    plt.plot(x, x*x, 'ko')
    plt.title('Page Three')
    pdf.savefig(fig)  # or you can pass a Figure object to pdf.savefig
    plt.close()

    # We can also set the file's metadata via the PdfPages object:
    d = pdf.infodict()
    d['Title'] = 'Multipage PDF Example'
    d['Author'] = u'Jouni K. Sepp\xe4nen'
    d['Subject'] = 'How to create a multipage pdf file and set its metadata'
    d['Keywords'] = 'PdfPages multipage keywords author title subject'
    d['CreationDate'] = datetime.datetime(2009, 11, 13)
    d['ModDate'] = datetime.datetime.today()

plt.close() is exactly what I was looking for!
g
gerrit

The other answers are correct. However, I sometimes find that I want to open the figure object later. For example, I might want to change the label sizes, add a grid, or do other processing. In a perfect world, I would simply rerun the code generating the plot, and adapt the settings. Alas, the world is not perfect. Therefore, in addition to saving to PDF or PNG, I add:

with open('some_file.pkl', "wb") as fp:
    pickle.dump(fig, fp, protocol=4)

Like this, I can later load the figure object and manipulate the settings as I please.

I also write out the stack with the source-code and locals() dictionary for each function/method in the stack, so that I can later tell exactly what generated the figure.

NB: Be careful, as sometimes this method generates huge files.


would it not be easier to do development in a jupyter notebook, with the figures inline ? This way you can track exactly the history, and even rerun it.
@CiprianTomoiaga I never generate production plots from an interactive Python shell (Jupyter or otherwise). I plot all from scripts.
a
afroditi

I used the following:

import matplotlib.pyplot as plt

p1 = plt.plot(dates, temp, 'r-', label="Temperature (celsius)")  
p2 = plt.plot(dates, psal, 'b-', label="Salinity (psu)")  
plt.legend(loc='upper center', numpoints=1, bbox_to_anchor=(0.5, -0.05),        ncol=2, fancybox=True, shadow=True)

plt.savefig('data.png')  
plt.show() 
plt.close()

I found very important to use plt.show after saving the figure, otherwise it won't work.figure exported in png


M
Mark P.

After using the plot() and other functions to create the content you want, you could use a clause like this to select between plotting to the screen or to file:

import matplotlib.pyplot as plt

fig = plt.figure(figsize=(4, 5))       # size in inches
# use plot(), etc. to create your plot.

# Pick one of the following lines to uncomment
# save_file = None
# save_file = os.path.join(your_directory, your_file_name)  

if save_file:
    plt.savefig(save_file)
    plt.close(fig)
else:
    plt.show()

Some say fig = plt.figure(figuresize=4, 5) could be fig = plt.figure(figsize=(4, 5)) #figure sizes in inches
C
Covich

If, like me, you use Spyder IDE, you have to disable the interactive mode with :

plt.ioff()

(this command is automatically launched with the scientific startup)

If you want to enable it again, use :

plt.ion()


N
Nutcracker

You can either do:

plt.show(hold=False)
plt.savefig('name.pdf')

and remember to let savefig finish before closing the GUI plot. This way you can see the image beforehand.

Alternatively, you can look at it with plt.show() Then close the GUI and run the script again, but this time replace plt.show() with plt.savefig().

Alternatively, you can use

fig, ax = plt.figure(nrows=1, ncols=1)
plt.plot(...)
plt.show()
fig.savefig('out.pdf')

got an unexpected keyword argument 'hold'
D
Durgesh satam

The Solution :

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.style.use('ggplot')
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
plt.figure()
ts.plot()
plt.savefig("foo.png", bbox_inches='tight')

If you do want to display the image as well as saving the image use:

%matplotlib inline

after import matplotlib


J
Jayhello

According to question Matplotlib (pyplot) savefig outputs blank image.

One thing should note: if you use plt.show and it should after plt.savefig, or you will give a blank image.

A detailed example:

import numpy as np
import matplotlib.pyplot as plt


def draw_result(lst_iter, lst_loss, lst_acc, title):
    plt.plot(lst_iter, lst_loss, '-b', label='loss')
    plt.plot(lst_iter, lst_acc, '-r', label='accuracy')

    plt.xlabel("n iteration")
    plt.legend(loc='upper left')
    plt.title(title)
    plt.savefig(title+".png")  # should before plt.show method

    plt.show()


def test_draw():
    lst_iter = range(100)
    lst_loss = [0.01 * i + 0.01 * i ** 2 for i in xrange(100)]
    # lst_loss = np.random.randn(1, 100).reshape((100, ))
    lst_acc = [0.01 * i - 0.01 * i ** 2 for i in xrange(100)]
    # lst_acc = np.random.randn(1, 100).reshape((100, ))
    draw_result(lst_iter, lst_loss, lst_acc, "sgd_method")


if __name__ == '__main__':
    test_draw()

https://i.stack.imgur.com/zWZls.png


佚名

When using matplotlib.pyplot, you must first save your plot and then close it using these 2 lines:

fig.savefig('plot.png') # save the plot, place the path you want to save the figure in quotation
plt.close(fig) # close the figure window

F
Francesco Boi
import matplotlib.pyplot as plt
plt.savefig("image.png")

In Jupyter Notebook you have to remove plt.show() and add plt.savefig(), together with the rest of the plt-code in one cell. The image will still show up in your notebook.


r
r_e

Additionally to those above, I added __file__ for the name so the picture and Python file get the same names. I also added few arguments to make It look better:

# Saves a PNG file of the current graph to the folder and updates it every time
# (nameOfimage, dpi=(sizeOfimage),Keeps_Labels_From_Disappearing)
plt.savefig(__file__+".png",dpi=(250), bbox_inches='tight')
# Hard coded name: './test.png'

W
Woodyet

Just a extra note because I can't comment on posts yet.

If you are using plt.savefig('myfig') or something along these lines make sure to add a plt.clf() after your image is saved. This is because savefig does not close the plot and if you add to the plot after without a plt.clf() you'll be adding to the previous plot.

You may not notice if your plots are similar as it will plot over the previous plot, but if you are in a loop saving your figures the plot will slowly become massive and make your script very slow.


S
Shivid

Given that today (was not available when this question was made) lots of people use Jupyter Notebook as python console, there is an extremely easy way to save the plots as .png, just call the matplotlib's pylab class from Jupyter Notebook, plot the figure 'inline' jupyter cells, and then drag that figure/image to a local directory. Don't forget %matplotlib inline in the first line!


that's a good idea, just need to take note of the impact on filesize if the image is left embedded in the notebook..
I
Identity theft is not a joke

As suggested before, you can either use:

import matplotlib.pyplot as plt
plt.savefig("myfig.png")

For saving whatever IPhython image that you are displaying. Or on a different note (looking from a different angle), if you ever get to work with open cv, or if you have open cv imported, you can go for:

import cv2

cv2.imwrite("myfig.png",image)

But this is just in case if you need to work with Open CV. Otherwise plt.savefig() should be sufficient.


M
Mark

well, I do recommend using wrappers to render or control the plotting. examples can be mpltex (https://github.com/liuyxpp/mpltex) or prettyplotlib (https://github.com/olgabot/prettyplotlib).

import mpltex

@mpltex.acs_decorator
def myplot():
  plt.figure()
  plt.plot(x,y,'b-',lable='xxx')
  plt.tight_layout(pad=0.5)
  plt.savefig('xxxx')  # the figure format was controlled by the decorator, it can be either eps, or pdf or png....
  plt.close()

I basically use this decorator a lot for publishing academic papers in various journals at American Chemical Society, American Physics Society, Opticcal Society American, Elsivier and so on.

https://i.stack.imgur.com/T2zV8.png


M
Mark

You can do it like this:

def plotAFig():
  plt.figure()
  plt.plot(x,y,'b-')
  plt.savefig("figurename.png")
  plt.close()

R
Rudresh Dixit

You can save your image with any extension(png, jpg,etc.) and with the resolution you want. Here's a function to save your figure.

import os

def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
    path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
    print("Saving figure", fig_id)
    if tight_layout:
        plt.tight_layout()
    plt.savefig(path, format=fig_extension, dpi=resolution)

'fig_id' is the name by which you want to save your figure. Hope it helps:)


p
pedro rodriguez

Nothing was working for me. The problem is that the saved imaged was very small and I could not find how the hell make it bigger.

This seems to make it bigger, but still not full screen.

https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure.set_size_inches

fig.set_size_inches((w, h))

Hope that helps somebody.


c
creeser

using 'agg' due to no gui on server. Debugging on ubuntu 21.10 with gui and VSC. In debug, trying to both display a plot and then saving to file for web UI.

Found out that saving before showing is required, otherwise saved plot is blank. I suppose that showing will clear the plot for some reason. Do this:

plt.savefig(imagePath) 
plt.show()
plt.close(fig)

Instead of this:

plt.show()
plt.savefig(imagePath) 
plt.close(fig)