How can I achieve the equivalents of SQL's IN
and NOT IN
?
I have a list with the required values. Here's the scenario:
df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
countries_to_keep = ['UK', 'China']
# pseudo-code:
df[df['country'] not in countries_to_keep]
My current way of doing this is as follows:
df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
df2 = pd.DataFrame({'country': ['UK', 'China'], 'matched': True})
# IN
df.merge(df2, how='inner', on='country')
# NOT IN
not_in = df.merge(df2, how='left', on='country')
not_in = not_in[pd.isnull(not_in['matched'])]
But this seems like a horrible kludge. Can anyone improve on it?
~
was added as an edit in 2019.
You can use pd.Series.isin
.
For "IN" use: something.isin(somewhere)
Or for "NOT IN": ~something.isin(somewhere)
As a worked example:
import pandas as pd
>>> df
country
0 US
1 UK
2 Germany
3 China
>>> countries_to_keep
['UK', 'China']
>>> df.country.isin(countries_to_keep)
0 False
1 True
2 False
3 True
Name: country, dtype: bool
>>> df[df.country.isin(countries_to_keep)]
country
1 UK
3 China
>>> df[~df.country.isin(countries_to_keep)]
country
0 US
2 Germany
Alternative solution that uses .query() method:
In [5]: df.query("countries in @countries_to_keep")
Out[5]:
countries
1 UK
3 China
In [6]: df.query("countries not in @countries_to_keep")
Out[6]:
countries
0 US
2 Germany
countries
-> countries_to_keep
, so my answer has become invalid. I've updated my answer correspondingly. countries_to_keep
- is a list.
countries_to_keep
. Is it possible to specify the list of values inside the query directly?
How to implement 'in' and 'not in' for a pandas DataFrame?
Pandas offers two methods: Series.isin
and DataFrame.isin
for Series and DataFrames, respectively.
Filter DataFrame Based on ONE Column (also applies to Series)
The most common scenario is applying an isin
condition on a specific column to filter rows in a DataFrame.
df = pd.DataFrame({'countries': ['US', 'UK', 'Germany', np.nan, 'China']})
df
countries
0 US
1 UK
2 Germany
3 China
c1 = ['UK', 'China'] # list
c2 = {'Germany'} # set
c3 = pd.Series(['China', 'US']) # Series
c4 = np.array(['US', 'UK']) # array
Series.isin
accepts various types as inputs. The following are all valid ways of getting what you want:
df['countries'].isin(c1)
0 False
1 True
2 False
3 False
4 True
Name: countries, dtype: bool
# `in` operation
df[df['countries'].isin(c1)]
countries
1 UK
4 China
# `not in` operation
df[~df['countries'].isin(c1)]
countries
0 US
2 Germany
3 NaN
# Filter with `set` (tuples work too)
df[df['countries'].isin(c2)]
countries
2 Germany
# Filter with another Series
df[df['countries'].isin(c3)]
countries
0 US
4 China
# Filter with array
df[df['countries'].isin(c4)]
countries
0 US
1 UK
Filter on MANY Columns
Sometimes, you will want to apply an 'in' membership check with some search terms over multiple columns,
df2 = pd.DataFrame({
'A': ['x', 'y', 'z', 'q'], 'B': ['w', 'a', np.nan, 'x'], 'C': np.arange(4)})
df2
A B C
0 x w 0
1 y a 1
2 z NaN 2
3 q x 3
c1 = ['x', 'w', 'p']
To apply the isin
condition to both columns "A" and "B", use DataFrame.isin
:
df2[['A', 'B']].isin(c1)
A B
0 True True
1 False False
2 False False
3 False True
From this, to retain rows where at least one column is True
, we can use any
along the first axis:
df2[['A', 'B']].isin(c1).any(axis=1)
0 True
1 False
2 False
3 True
dtype: bool
df2[df2[['A', 'B']].isin(c1).any(axis=1)]
A B C
0 x w 0
3 q x 3
Note that if you want to search every column, you'd just omit the column selection step and do
df2.isin(c1).any(axis=1)
Similarly, to retain rows where ALL columns are True
, use all
in the same manner as before.
df2[df2[['A', 'B']].isin(c1).all(axis=1)]
A B C
0 x w 0
Notable Mentions: numpy.isin, query, list comprehensions (string data)
In addition to the methods described above, you can also use the numpy equivalent: numpy.isin
.
# `in` operation
df[np.isin(df['countries'], c1)]
countries
1 UK
4 China
# `not in` operation
df[np.isin(df['countries'], c1, invert=True)]
countries
0 US
2 Germany
3 NaN
Why is it worth considering? NumPy functions are usually a bit faster than their pandas equivalents because of lower overhead. Since this is an elementwise operation that does not depend on index alignment, there are very few situations where this method is not an appropriate replacement for pandas' isin
.
Pandas routines are usually iterative when working with strings, because string operations are hard to vectorise. There is a lot of evidence to suggest that list comprehensions will be faster here.. We resort to an in
check now.
c1_set = set(c1) # Using `in` with `sets` is a constant time operation...
# This doesn't matter for pandas because the implementation differs.
# `in` operation
df[[x in c1_set for x in df['countries']]]
countries
1 UK
4 China
# `not in` operation
df[[x not in c1_set for x in df['countries']]]
countries
0 US
2 Germany
3 NaN
It is a lot more unwieldy to specify, however, so don't use it unless you know what you're doing.
Lastly, there's also DataFrame.query
which has been covered in this answer. numexpr FTW!
I've been usually doing generic filtering over rows like this:
criterion = lambda row: row['countries'] not in countries
not_in = df[df.apply(criterion, axis=1)]
Collating possible solutions from the answers:
For IN: df[df['A'].isin([3, 6])]
For NOT IN:
df[-df["A"].isin([3, 6])] df[~df["A"].isin([3, 6])] df[df["A"].isin([3, 6]) == False] df[np.logical_not(df["A"].isin([3, 6]))]
logical_not
is a mouthful equivalent of the ~
operator.
I wanted to filter out dfbc rows that had a BUSINESS_ID that was also in the BUSINESS_ID of dfProfilesBusIds
dfbc = dfbc[~dfbc['BUSINESS_ID'].isin(dfProfilesBusIds['BUSINESS_ID'])]
Why is no one talking about the performance of various filtering methods? In fact, this topic often pops up here (see the example). I did my own performance test for a large data set. It is very interesting and instructive.
df = pd.DataFrame({'animals': np.random.choice(['cat', 'dog', 'mouse', 'birds'], size=10**7),
'number': np.random.randint(0,100, size=(10**7,))})
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000000 entries, 0 to 9999999
Data columns (total 2 columns):
# Column Dtype
--- ------ -----
0 animals object
1 number int64
dtypes: int64(1), object(1)
memory usage: 152.6+ MB
%%timeit
# .isin() by one column
conditions = ['cat', 'dog']
df[df.animals.isin(conditions)]
367 ms ± 2.34 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
# .query() by one column
conditions = ['cat', 'dog']
df.query('animals in @conditions')
395 ms ± 3.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
# .loc[]
df.loc[(df.animals=='cat')|(df.animals=='dog')]
987 ms ± 5.17 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
df[df.apply(lambda x: x['animals'] in ['cat', 'dog'], axis=1)]
41.9 s ± 490 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
new_df = df.set_index('animals')
new_df.loc[['cat', 'dog'], :]
3.64 s ± 62.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
new_df = df.set_index('animals')
new_df[new_df.index.isin(['cat', 'dog'])]
469 ms ± 8.98 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%%timeit
s = pd.Series(['cat', 'dog'], name='animals')
df.merge(s, on='animals', how='inner')
796 ms ± 30.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Thus, the isin
method turned out to be the fastest and the method with apply()
was the slowest, which is not surprising.
You can also use .isin()
inside .query()
:
df.query('country.isin(@countries_to_keep).values')
# Or alternatively:
df.query('country.isin(["UK", "China"]).values')
To negate your query, use ~
:
df.query('~country.isin(@countries_to_keep).values')
Update:
Another way is to use comparison operators:
df.query('country == @countries_to_keep')
# Or alternatively:
df.query('country == ["UK", "China"]')
And to negate the query, use !=
:
df.query('country != @countries_to_keep')
in
and not in
inside query
. Interesting that query
supports both!
df = pd.DataFrame({'countries':['US','UK','Germany','China']})
countries = ['UK','China']
implement in:
df[df.countries.isin(countries)]
implement not in as in of rest countries:
df[df.countries.isin([x for x in np.unique(df.countries) if x not in countries])]
A trick if you want to keep the order of the list:
df = pd.DataFrame({'country': ['US', 'UK', 'Germany', 'China']})
countries_to_keep = ['Germany', 'US']
ind=[df.index[df['country']==i].tolist() for i in countries_to_keep]
flat_ind=[item for sublist in ind for item in sublist]
df.reindex(flat_ind)
country
2 Germany
0 US
My 2c worth: I needed a combination of in and ifelse statements for a dataframe, and this worked for me.
sale_method = pd.DataFrame(model_data["Sale Method"].str.upper())
sale_method["sale_classification"] = np.where(
sale_method["Sale Method"].isin(["PRIVATE"]),
"private",
np.where(
sale_method["Sale Method"].str.contains("AUCTION"), "auction", "other"
),
)
Success story sharing
df = pd.Series({'countries':['US','UK','Germany','China']})
df
, both mine and his, is aDataFrame
.countries
is a list.df[~df.countries.isin(countries)]
produces aDataFrame
, not aSeries
, and seems to work even back in 0.11.0.dev-14a04dd.countries
variable. Well, the OP does it, and that's inherited, but that something is done badly before does not justify doing it badly now.