I want to make some modifications to a few selected tick labels in a plot.
For example, if I do:
label = axes.yaxis.get_major_ticks()[2].label
label.set_fontsize(size)
label.set_rotation('vertical')
the font size and the orientation of the tick label is changed.
However, if try:
label.set_text('Foo')
the tick label is not modified. Also if I do:
print label.get_text()
nothing is printed.
Here's some more strangeness. When I tried this:
from pylab import *
axes = figure().add_subplot(111)
t = arange(0.0, 2.0, 0.01)
s = sin(2*pi*t)
axes.plot(t, s)
for ticklabel in axes.get_xticklabels():
print ticklabel.get_text()
Only empty strings are printed, but the plot contains ticks labeled as '0.0', '0.5', '1.0', '1.5', and '2.0'.
draw()
before trying to print the labels, you'll get what you expect. Setting individual tick labels is unfortunately a touch more difficult (what's happening is that the tick locator and formatter hasn't been reset and it overrides things when you set_text
). I'll add an example in a bit, if someone doesn't beat me to it. I have to catch the bus, at the moment, though.
Caveat: Unless the ticklabels are already set to a string (as is usually the case in e.g. a boxplot), this will not work with any version of matplotlib newer than 1.1.0
. If you're working from the current github master, this won't work. I'm not sure what the problem is yet... It may be an unintended change, or it may not be...
Normally, you'd do something along these lines:
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
# We need to draw the canvas, otherwise the labels won't be positioned and
# won't have values yet.
fig.canvas.draw()
labels = [item.get_text() for item in ax.get_xticklabels()]
labels[1] = 'Testing'
ax.set_xticklabels(labels)
plt.show()
https://i.stack.imgur.com/5m900.png
To understand the reason why you need to jump through so many hoops, you need to understand a bit more about how matplotlib is structured.
Matplotlib deliberately avoids doing "static" positioning of ticks, etc, unless it's explicitly told to. The assumption is that you'll want to interact with the plot, and so the bounds of the plot, ticks, ticklabels, etc will be dynamically changing.
Therefore, you can't just set the text of a given tick label. By default, it's re-set by the axis's Locator and Formatter every time the plot is drawn.
However, if the Locators and Formatters are set to be static (FixedLocator
and FixedFormatter
, respectively), then the tick labels stay the same.
This is what set_*ticklabels
or ax.*axis.set_ticklabels
does.
Hopefully that makes it slighly more clear as to why changing an individual tick label is a bit convoluted.
Often, what you actually want to do is just annotate a certain position. In that case, look into annotate
, instead.
One can also do this with pylab and xticks
import matplotlib
import matplotlib.pyplot as plt
x = [0,1,2]
y = [90,40,65]
labels = ['high', 'low', 37337]
plt.plot(x,y, 'r')
plt.xticks(x, labels, rotation='vertical')
plt.show()
https://matplotlib.org/stable/gallery/ticks_and_spines/ticklabels_rotation.html
In newer versions of matplotlib
, if you do not set the tick labels with a bunch of str
values, they are ''
by default (and when the plot is draw the labels are simply the ticks values). Knowing that, to get your desired output would require something like this:
>>> from pylab import *
>>> axes = figure().add_subplot(111)
>>> a=axes.get_xticks().tolist()
>>> a[1]='change'
>>> axes.set_xticklabels(a)
[<matplotlib.text.Text object at 0x539aa50>, <matplotlib.text.Text object at 0x53a0c90>,
<matplotlib.text.Text object at 0x53a73d0>, <matplotlib.text.Text object at 0x53a7a50>,
<matplotlib.text.Text object at 0x53aa110>, <matplotlib.text.Text object at 0x53aa790>]
>>> plt.show()
https://i.stack.imgur.com/YiGb5.png
and now if you check the _xticklabels
, they are no longer a bunch of ''
.
>>> [item.get_text() for item in axes.get_xticklabels()]
['0.0', 'change', '1.0', '1.5', '2.0']
It works in the versions from 1.1.1rc1
to the current version 2.0
.
set_xticklabels
with a mixed list of strings and tick objects.
ax.get_xticks().tolist()
). The most voted solution did not (ax.get_xtickslabels()
). Somehow it was not able to extract the labels before the plt.show()
was excuted, although I used fig.canvas.draw()
as suggested.
It's been a while since this question was asked. As of today (matplotlib 2.2.2
) and after some reading and trials, I think the best/proper way is the following:
Matplotlib has a module named ticker
that "contains classes to support completely configurable tick locating and formatting". To modify a specific tick from the plot, the following works for me:
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import numpy as np
def update_ticks(x, pos):
if x == 0:
return 'Mean'
elif pos == 6:
return 'pos is 6'
else:
return x
data = np.random.normal(0, 1, 1000)
fig, ax = plt.subplots()
ax.hist(data, bins=25, edgecolor='black')
ax.xaxis.set_major_formatter(mticker.FuncFormatter(update_ticks))
plt.show()
https://i.stack.imgur.com/AuRQR.png
Caveat! x
is the value of the tick and pos
is its relative position in order in the axis. Notice that pos
takes values starting in 1
, not in 0
as usual when indexing.
In my case, I was trying to format the y-axis
of a histogram with percentage values. mticker
has another class named PercentFormatter
that can do this easily without the need to define a separate function as before:
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import numpy as np
data = np.random.normal(0, 1, 1000)
fig, ax = plt.subplots()
weights = np.ones_like(data) / len(data)
ax.hist(data, bins=25, weights=weights, edgecolor='black')
ax.yaxis.set_major_formatter(mticker.PercentFormatter(xmax=1.0, decimals=1))
plt.show()
https://i.stack.imgur.com/PKy37.png
In this case xmax
is the data value that corresponds to 100%. Percentages are computed as x / xmax * 100
, that's why we fix xmax=1.0
. Also, decimals
is the number of decimal places to place after the point.
This works:
import matplotlib.pyplot as plt
fig, ax1 = plt.subplots(1,1)
x1 = [0,1,2,3]
squad = ['Fultz','Embiid','Dario','Simmons']
ax1.set_xticks(x1)
ax1.set_xticklabels(squad, minor=False, rotation=45)
https://i.stack.imgur.com/qQx6q.png
The axes class has a set_yticklabels function which allows you to set the tick labels, like so:
#ax is the axes instance
group_labels = ['control', 'cold treatment',
'hot treatment', 'another treatment',
'the last one']
ax.set_xticklabels(group_labels)
I'm still working on why your example above didn't work.
This also works in matplotlib 3:
x1 = [0,1,2,3]
squad = ['Fultz','Embiid','Dario','Simmons']
plt.xticks(x1, squad, rotation=45)
If you do not work with fig
and ax
and you want to modify all labels (e.g. for normalization) you can do this:
labels, locations = plt.yticks()
plt.yticks(labels, labels/max(labels))
Try this :
fig,axis = plt.subplots(nrows=1,ncols=1,figsize=(13,6),sharex=True)
axis.set_xticklabels(['0', 'testing', '10000', '20000', '30000'],fontsize=22)
I noticed that all the solutions posted here that use set_xticklabels()
are not preserving the offset, which is a scaling factor applied to the ticks values to create better-looking tick labels. For instance, if the ticks are on the order of 0.00001 (1e-5), matplotlib will automatically add a scaling factor (or offset
) of 1e-5
, so the resultant tick labels may end up as 1 2 3 4
, rather than 1e-5 2e-5 3e-5 4e-5
.
Below gives an example:
The x
array is np.array([1, 2, 3, 4])/1e6
, and y
is y=x**2
. So both are very small values.
Left column: manually change the 1st and 3rd labels, as suggested by @Joe Kington. Note that the offset is lost.
Mid column: similar as @iipr suggested, using a FuncFormatter
.
Right column: My suggested offset-preserving solution.
https://i.stack.imgur.com/ZZAOV.png
Complete code here:
import matplotlib.pyplot as plt
import numpy as np
# create some *small* data to plot
x = np.arange(5)/1e6
y = x**2
fig, axes = plt.subplots(1, 3, figsize=(10,6))
#------------------The set_xticklabels() solution------------------
ax1 = axes[0]
ax1.plot(x, y)
fig.canvas.draw()
labels = [item.get_text() for item in ax1.get_xticklabels()]
# Modify specific labels
labels[1] = 'Testing'
labels[3] = 'Testing2'
ax1.set_xticklabels(labels)
ax1.set_title('set_xticklabels()')
#--------------FuncFormatter solution--------------
import matplotlib.ticker as mticker
def update_ticks(x, pos):
if pos==1:
return 'testing'
elif pos==3:
return 'testing2'
else:
return x
ax2=axes[1]
ax2.plot(x,y)
ax2.xaxis.set_major_formatter(mticker.FuncFormatter(update_ticks))
ax2.set_title('Func Formatter')
#-------------------My solution-------------------
def changeLabels(axis, pos, newlabels):
'''Change specific x/y tick labels
Args:
axis (Axis): .xaxis or .yaxis obj.
pos (list): indices for labels to change.
newlabels (list): new labels corresponding to indices in <pos>.
'''
if len(pos) != len(newlabels):
raise Exception("Length of <pos> doesn't equal that of <newlabels>.")
ticks = axis.get_majorticklocs()
# get the default tick formatter
formatter = axis.get_major_formatter()
# format the ticks into strings
labels = formatter.format_ticks(ticks)
# Modify specific labels
for pii, lii in zip(pos, newlabels):
labels[pii] = lii
# Update the ticks and ticklabels. Order is important here.
# Need to first get the offset (1e-6 in this case):
offset = formatter.get_offset()
# Then set the modified labels:
axis.set_ticklabels(labels)
# In doing so, matplotlib creates a new FixedFormatter and sets it to the xaxis
# and the new FixedFormatter has no offset. So we need to query the
# formatter again and re-assign the offset:
axis.get_major_formatter().set_offset_string(offset)
return
ax3 = axes[2]
ax3.plot(x, y)
changeLabels(ax3.xaxis, [1, 3], ['Testing', 'Testing2'])
ax3.set_title('With offset')
fig.show()
plt.savefig('tick_labels.png')
Caveat: it appears that solutions that use set_xticklabels()
, including my own, relies on FixedFormatter
, which is static and doesn't respond to figure resizing. To observe the effect, change the figure to a smaller size, e.g. fig, axes = plt.subplots(1, 3, figsize=(6,6))
and enlarge the figure window. You will notice that that only the mid column responds to resizing and adds more ticks as the figure gets larger. The left and right column will have empty tick labels (see figure below).
Caveat 2: I also noticed that if your tick values are floats, calling set_xticklabels(ticks)
directly might give you ugly-looking strings, like 1.499999999998
instead of 1.5
.
https://i.stack.imgur.com/chgXN.png
you can do:
for k in ax.get_xmajorticklabels():
if some-condition:
k.set_color(any_colour_you_like)
draw()
Success story sharing
bold
while others use fontweight of "light". Is there a way to do it?fig.canvas.draw()
is crucial