我用 C++11 做了一个图灵机。 C++11 添加的特性对于图灵机来说确实并不重要。它只是使用可变参数模板提供任意长度的规则列表,而不是使用不正当的宏元编程:)。条件名称用于在标准输出上输出图表。我已删除该代码以保持示例简短。
#include <iostream>
template<bool C, typename A, typename B>
struct Conditional {
typedef A type;
};
template<typename A, typename B>
struct Conditional<false, A, B> {
typedef B type;
};
template<typename...>
struct ParameterPack;
template<bool C, typename = void>
struct EnableIf { };
template<typename Type>
struct EnableIf<true, Type> {
typedef Type type;
};
template<typename T>
struct Identity {
typedef T type;
};
// define a type list
template<typename...>
struct TypeList;
template<typename T, typename... TT>
struct TypeList<T, TT...> {
typedef T type;
typedef TypeList<TT...> tail;
};
template<>
struct TypeList<> {
};
template<typename List>
struct GetSize;
template<typename... Items>
struct GetSize<TypeList<Items...>> {
enum { value = sizeof...(Items) };
};
template<typename... T>
struct ConcatList;
template<typename... First, typename... Second, typename... Tail>
struct ConcatList<TypeList<First...>, TypeList<Second...>, Tail...> {
typedef typename ConcatList<TypeList<First..., Second...>,
Tail...>::type type;
};
template<typename T>
struct ConcatList<T> {
typedef T type;
};
template<typename NewItem, typename List>
struct AppendItem;
template<typename NewItem, typename...Items>
struct AppendItem<NewItem, TypeList<Items...>> {
typedef TypeList<Items..., NewItem> type;
};
template<typename NewItem, typename List>
struct PrependItem;
template<typename NewItem, typename...Items>
struct PrependItem<NewItem, TypeList<Items...>> {
typedef TypeList<NewItem, Items...> type;
};
template<typename List, int N, typename = void>
struct GetItem {
static_assert(N > 0, "index cannot be negative");
static_assert(GetSize<List>::value > 0, "index too high");
typedef typename GetItem<typename List::tail, N-1>::type type;
};
template<typename List>
struct GetItem<List, 0> {
static_assert(GetSize<List>::value > 0, "index too high");
typedef typename List::type type;
};
template<typename List, template<typename, typename...> class Matcher, typename... Keys>
struct FindItem {
static_assert(GetSize<List>::value > 0, "Could not match any item.");
typedef typename List::type current_type;
typedef typename Conditional<Matcher<current_type, Keys...>::value,
Identity<current_type>, // found!
FindItem<typename List::tail, Matcher, Keys...>>
::type::type type;
};
template<typename List, int I, typename NewItem>
struct ReplaceItem {
static_assert(I > 0, "index cannot be negative");
static_assert(GetSize<List>::value > 0, "index too high");
typedef typename PrependItem<typename List::type,
typename ReplaceItem<typename List::tail, I-1,
NewItem>::type>
::type type;
};
template<typename NewItem, typename Type, typename... T>
struct ReplaceItem<TypeList<Type, T...>, 0, NewItem> {
typedef TypeList<NewItem, T...> type;
};
enum Direction {
Left = -1,
Right = 1
};
template<typename OldState, typename Input, typename NewState,
typename Output, Direction Move>
struct Rule {
typedef OldState old_state;
typedef Input input;
typedef NewState new_state;
typedef Output output;
static Direction const direction = Move;
};
template<typename A, typename B>
struct IsSame {
enum { value = false };
};
template<typename A>
struct IsSame<A, A> {
enum { value = true };
};
template<typename Input, typename State, int Position>
struct Configuration {
typedef Input input;
typedef State state;
enum { position = Position };
};
template<int A, int B>
struct Max {
enum { value = A > B ? A : B };
};
template<int n>
struct State {
enum { value = n };
static char const * name;
};
template<int n>
char const* State<n>::name = "unnamed";
struct QAccept {
enum { value = -1 };
static char const* name;
};
struct QReject {
enum { value = -2 };
static char const* name;
};
#define DEF_STATE(ID, NAME) \
typedef State<ID> NAME ; \
NAME :: name = #NAME ;
template<int n>
struct Input {
enum { value = n };
static char const * name;
template<int... I>
struct Generate {
typedef TypeList<Input<I>...> type;
};
};
template<int n>
char const* Input<n>::name = "unnamed";
typedef Input<-1> InputBlank;
#define DEF_INPUT(ID, NAME) \
typedef Input<ID> NAME ; \
NAME :: name = #NAME ;
template<typename Config, typename Transitions, typename = void>
struct Controller {
typedef Config config;
enum { position = config::position };
typedef typename Conditional<
static_cast<int>(GetSize<typename config::input>::value)
<= static_cast<int>(position),
AppendItem<InputBlank, typename config::input>,
Identity<typename config::input>>::type::type input;
typedef typename config::state state;
typedef typename GetItem<input, position>::type cell;
template<typename Item, typename State, typename Cell>
struct Matcher {
typedef typename Item::old_state checking_state;
typedef typename Item::input checking_input;
enum { value = IsSame<State, checking_state>::value &&
IsSame<Cell, checking_input>::value
};
};
typedef typename FindItem<Transitions, Matcher, state, cell>::type rule;
typedef typename ReplaceItem<input, position, typename rule::output>::type new_input;
typedef typename rule::new_state new_state;
typedef Configuration<new_input,
new_state,
Max<position + rule::direction, 0>::value> new_config;
typedef Controller<new_config, Transitions> next_step;
typedef typename next_step::end_config end_config;
typedef typename next_step::end_input end_input;
typedef typename next_step::end_state end_state;
enum { end_position = next_step::position };
};
template<typename Input, typename State, int Position, typename Transitions>
struct Controller<Configuration<Input, State, Position>, Transitions,
typename EnableIf<IsSame<State, QAccept>::value ||
IsSame<State, QReject>::value>::type> {
typedef Configuration<Input, State, Position> config;
enum { position = config::position };
typedef typename Conditional<
static_cast<int>(GetSize<typename config::input>::value)
<= static_cast<int>(position),
AppendItem<InputBlank, typename config::input>,
Identity<typename config::input>>::type::type input;
typedef typename config::state state;
typedef config end_config;
typedef input end_input;
typedef state end_state;
enum { end_position = position };
};
template<typename Input, typename Transitions, typename StartState>
struct TuringMachine {
typedef Input input;
typedef Transitions transitions;
typedef StartState start_state;
typedef Controller<Configuration<Input, StartState, 0>, Transitions> controller;
typedef typename controller::end_config end_config;
typedef typename controller::end_input end_input;
typedef typename controller::end_state end_state;
enum { end_position = controller::end_position };
};
#include <ostream>
template<>
char const* Input<-1>::name = "_";
char const* QAccept::name = "qaccept";
char const* QReject::name = "qreject";
int main() {
DEF_INPUT(1, x);
DEF_INPUT(2, x_mark);
DEF_INPUT(3, split);
DEF_STATE(0, start);
DEF_STATE(1, find_blank);
DEF_STATE(2, go_back);
/* syntax: State, Input, NewState, Output, Move */
typedef TypeList<
Rule<start, x, find_blank, x_mark, Right>,
Rule<find_blank, x, find_blank, x, Right>,
Rule<find_blank, split, find_blank, split, Right>,
Rule<find_blank, InputBlank, go_back, x, Left>,
Rule<go_back, x, go_back, x, Left>,
Rule<go_back, split, go_back, split, Left>,
Rule<go_back, x_mark, start, x, Right>,
Rule<start, split, QAccept, split, Left>> rules;
/* syntax: initial input, rules, start state */
typedef TuringMachine<TypeList<x, x, x, x, split>, rules, start> double_it;
static_assert(IsSame<double_it::end_input,
TypeList<x, x, x, x, split, x, x, x, x>>::value,
"Hmm... This is borky!");
}
例子
#include <iostream>
template <int N> struct Factorial
{
enum { val = Factorial<N-1>::val * N };
};
template<>
struct Factorial<0>
{
enum { val = 1 };
};
int main()
{
// Note this value is generated at compile time.
// Also note that most compilers have a limit on the depth of the recursion available.
std::cout << Factorial<4>::val << "\n";
}
这有点有趣,但不是很实用。
回答问题的第二部分:这个事实在实践中有用吗?
简短的回答:有点。
长答案:是的,但前提是您是模板守护进程。
使用对其他人使用非常有用的模板元编程(即库)来产生良好的编程确实非常困难(尽管可行)。 To Help boost 甚至还有 MPL aka(元编程库)。但是尝试在你的模板代码中调试一个编译器错误,你将会经历一段漫长的艰难旅程。
但是一个很好的实际例子,它被用于有用的东西:
Scott Meyers 一直在使用模板工具对 C++ 语言进行扩展(我使用这个术语是松散的)。您可以在此处了解他的工作“Enforcing Code Features”
“C++ Templates Are Turing Complete”在模板中给出了图灵机的实现......这很重要,并且以非常直接的方式证明了这一点。当然,它也不是很有用!
我的 C++ 有点生疏,所以可能并不完美,但已经很接近了。
template <int N> struct Factorial
{
enum { val = Factorial<N-1>::val * N };
};
template <> struct Factorial<0>
{
enum { val = 1 };
}
const int num = Factorial<10>::val; // num set to 10! at compile time.
关键是要证明编译器正在完全评估递归定义,直到它得到答案。
举一个重要的例子: https://github.com/phresnel/metatrace ,一个 C++ 编译时光线追踪器。
请注意,C++0x 将以 constexpr
的形式添加非模板、编译时、图灵完备设施:
constexpr unsigned int fac (unsigned int u) {
return (u<=1) ? (1) : (u*fac(u-1));
}
您可以在需要编译时常量的任何地方使用 constexpr
-表达式,但您也可以使用非常量参数调用 constexpr
-函数。
一件很酷的事情是,这最终将启用编译时浮点数学,尽管标准明确指出编译时浮点运算不必匹配运行时浮点运算:
bool f(){ 字符数组[1+int(1+0.2-0.1-0.1)]; //翻译时必须求值 int size=1+int(1+0.2-0.1-0.1); //可以在运行时计算 return sizeof(array)==size;未指定 f() 的值是真还是假。
Andrei Alexandrescu 的书 Modern C++ Design - Generic Programming and Design Pattern 是亲身体验有用且强大的通用编程模式的最佳场所。
阶乘示例实际上并没有表明模板是图灵完备的,而是表明它们支持原始递归。显示模板图灵完备的最简单方法是通过 Church-Turing 论文,即通过实现图灵机(混乱且有点无意义)或无类型 lambda 演算的三个规则(app、abs var)。后者更简单,也更有趣。
当您了解 C++ 模板允许在编译时进行纯函数式编程时,正在讨论的是一个非常有用的功能,这种形式主义具有表现力、强大和优雅,但如果您没有经验,编写起来也非常复杂。还要注意有多少人发现,仅仅获得大量模板化的代码通常需要付出很大的努力:(纯)函数式语言就是这种情况,这使得编译更加困难,但出人意料地产生了不需要调试的代码。
我认为它称为template meta-programming。
好吧,这是一个运行 4 状态 2 符号繁忙海狸的编译时图灵机实现
#include <iostream>
#pragma mark - Tape
constexpr int Blank = -1;
template<int... xs>
class Tape {
public:
using type = Tape<xs...>;
constexpr static int length = sizeof...(xs);
};
#pragma mark - Print
template<class T>
void print(T);
template<>
void print(Tape<>) {
std::cout << std::endl;
}
template<int x, int... xs>
void print(Tape<x, xs...>) {
if (x == Blank) {
std::cout << "_ ";
} else {
std::cout << x << " ";
}
print(Tape<xs...>());
}
#pragma mark - Concatenate
template<class, class>
class Concatenate;
template<int... xs, int... ys>
class Concatenate<Tape<xs...>, Tape<ys...>> {
public:
using type = Tape<xs..., ys...>;
};
#pragma mark - Invert
template<class>
class Invert;
template<>
class Invert<Tape<>> {
public:
using type = Tape<>;
};
template<int x, int... xs>
class Invert<Tape<x, xs...>> {
public:
using type = typename Concatenate<
typename Invert<Tape<xs...>>::type,
Tape<x>
>::type;
};
#pragma mark - Read
template<int, class>
class Read;
template<int n, int x, int... xs>
class Read<n, Tape<x, xs...>> {
public:
using type = typename std::conditional<
(n == 0),
std::integral_constant<int, x>,
Read<n - 1, Tape<xs...>>
>::type::type;
};
#pragma mark - N first and N last
template<int, class>
class NLast;
template<int n, int x, int... xs>
class NLast<n, Tape<x, xs...>> {
public:
using type = typename std::conditional<
(n == sizeof...(xs)),
Tape<xs...>,
NLast<n, Tape<xs...>>
>::type::type;
};
template<int, class>
class NFirst;
template<int n, int... xs>
class NFirst<n, Tape<xs...>> {
public:
using type = typename Invert<
typename NLast<
n, typename Invert<Tape<xs...>>::type
>::type
>::type;
};
#pragma mark - Write
template<int, int, class>
class Write;
template<int pos, int x, int... xs>
class Write<pos, x, Tape<xs...>> {
public:
using type = typename Concatenate<
typename Concatenate<
typename NFirst<pos, Tape<xs...>>::type,
Tape<x>
>::type,
typename NLast<(sizeof...(xs) - pos - 1), Tape<xs...>>::type
>::type;
};
#pragma mark - Move
template<int, class>
class Hold;
template<int pos, int... xs>
class Hold<pos, Tape<xs...>> {
public:
constexpr static int position = pos;
using tape = Tape<xs...>;
};
template<int, class>
class Left;
template<int pos, int... xs>
class Left<pos, Tape<xs...>> {
public:
constexpr static int position = typename std::conditional<
(pos > 0),
std::integral_constant<int, pos - 1>,
std::integral_constant<int, 0>
>::type();
using tape = typename std::conditional<
(pos > 0),
Tape<xs...>,
Tape<Blank, xs...>
>::type;
};
template<int, class>
class Right;
template<int pos, int... xs>
class Right<pos, Tape<xs...>> {
public:
constexpr static int position = pos + 1;
using tape = typename std::conditional<
(pos < sizeof...(xs) - 1),
Tape<xs...>,
Tape<xs..., Blank>
>::type;
};
#pragma mark - States
template <int>
class Stop {
public:
constexpr static int write = -1;
template<int pos, class tape> using move = Hold<pos, tape>;
template<int x> using next = Stop<x>;
};
#define ADD_STATE(_state_) \
template<int> \
class _state_ { };
#define ADD_RULE(_state_, _read_, _write_, _move_, _next_) \
template<> \
class _state_<_read_> { \
public: \
constexpr static int write = _write_; \
template<int pos, class tape> using move = _move_<pos, tape>; \
template<int x> using next = _next_<x>; \
};
#pragma mark - Machine
template<template<int> class, int, class>
class Machine;
template<template<int> class State, int pos, int... xs>
class Machine<State, pos, Tape<xs...>> {
constexpr static int symbol = typename Read<pos, Tape<xs...>>::type();
using state = State<symbol>;
template<int x>
using nextState = typename State<symbol>::template next<x>;
using modifiedTape = typename Write<pos, state::write, Tape<xs...>>::type;
using move = typename state::template move<pos, modifiedTape>;
constexpr static int nextPos = move::position;
using nextTape = typename move::tape;
public:
using step = Machine<nextState, nextPos, nextTape>;
};
#pragma mark - Run
template<class>
class Run;
template<template<int> class State, int pos, int... xs>
class Run<Machine<State, pos, Tape<xs...>>> {
using step = typename Machine<State, pos, Tape<xs...>>::step;
public:
using type = typename std::conditional<
std::is_same<State<0>, Stop<0>>::value,
Tape<xs...>,
Run<step>
>::type::type;
};
ADD_STATE(A);
ADD_STATE(B);
ADD_STATE(C);
ADD_STATE(D);
ADD_RULE(A, Blank, 1, Right, B);
ADD_RULE(A, 1, 1, Left, B);
ADD_RULE(B, Blank, 1, Left, A);
ADD_RULE(B, 1, Blank, Left, C);
ADD_RULE(C, Blank, 1, Right, Stop);
ADD_RULE(C, 1, 1, Left, D);
ADD_RULE(D, Blank, 1, Right, D);
ADD_RULE(D, 1, Blank, Right, A);
using tape = Tape<Blank>;
using machine = Machine<A, 0, tape>;
using result = Run<machine>::type;
int main() {
print(result());
return 0;
}
Ideone 证明运行:https://ideone.com/MvBU3Z
说明:http://victorkomarov.blogspot.ru/2016/03/compile-time-turing-machine.html
带有更多示例的 Github:https://github.com/fnz/CTTM
指出它是一种纯粹的函数式语言也很有趣,尽管几乎不可能调试。如果您查看 James 帖子,您会明白我所说的功能性是什么意思。一般来说,它不是 C++ 最有用的特性。它不是为此而设计的。这是被发现的东西。
一个相当有用的例子是比率类。周围有一些变体。通过部分重载,捕获 D==0 的情况相当简单。真正的计算是在计算 N 和 D 的 GCD 和编译时间。当您在编译时计算中使用这些比率时,这是必不可少的。
示例:当您计算厘米(5)*公里(5)时,在编译时您将乘以 ratio<1,100> 和 ratio<1000,1>。为了防止溢出,您需要一个 ratio<10,1> 而不是 ratio<1000,100>。
Turing machine 是图灵完备的,但这并不意味着您应该将其用于生产代码。
根据我的经验,尝试用模板做任何不重要的事情都是混乱、丑陋和毫无意义的。您无法“调试”您的“代码”,编译时错误消息将是神秘的并且通常在最不可能的地方,并且您可以通过不同的方式获得相同的性能优势。 (提示:4!= 24)。更糟糕的是,您的代码对于普通的 C++ 程序员来说是不可理解的,并且由于当前编译器的广泛支持水平,您的代码可能是不可移植的。
模板非常适合通用代码生成(容器类、类包装器、混入),但不是——在我看来,模板的图灵完整性在实践中没有用。
只是另一个如何不编程的例子:
template<int Depth, int A, typename B> struct K17 { static const int x = K17 <Depth+1, 0, K17<Depth,A,B> >::x + K17 <Depth+1, 1, K17<Depth,A,B> >::x + K17 <Depth+1, 2, K17<Depth,A,B> >::x + K17 <Depth+1, 3, K17<Depth,A,B> >::x + K17 <Depth+1, 4, K17<Depth,A,B> >::x; }; template <int A, typename B> struct K17 <16,A,B> { static const int x = 1; }; static const int z = K17 <0,0,int>::x; void main(void) { }
在 C++ templates are turing complete 发帖
K17<Depth+1>::x * 5
替换所有添加时,这更容易看到。