Are there any canned Python methods to convert an Integer (or Long) into a binary string in Python?
There are a myriad of dec2bin() functions out on Google... But I was hoping I could use a built-in function / library.
Python's string format method can take a format spec.
>>> "{0:b}".format(37)
'100101'
If you're looking for bin()
as an equivalent to hex()
, it was added in python 2.6.
Example:
>>> bin(10)
'0b1010'
str(bin(i))[2:]
(0.369s for 1000000ops) than "{0:b}".format(i)
(0.721s for 1000000ops)
str.format()
is the wrong tool anyway, you would use format(i, 'b')
instead. Take into account that that also gives you padding and alignment options though; format(i, '016b')
to format to a 16-bit zero-padded binary number. To do the same with bin()
you'd have to add a str.zfill()
call: bin(i)[2:].zfill(16)
(no need to call str()
!). format()
's readability and flexibility (dynamic formatting is much harder with bin()
) are great tradeoffs, don't optimise for performance unless you have to, until then optimise for maintainability.
f"{37:b}"
.
Python actually does have something already built in for this, the ability to do operations such as '{0:b}'.format(42)
, which will give you the bit pattern (in a string) for 42
, or 101010
.
For a more general philosophy, no language or library will give its user base everything that they desire. If you're working in an environment that doesn't provide exactly what you need, you should be collecting snippets of code as you develop to ensure you never have to write the same thing twice. Such as, for example, the pseudo-code:
define intToBinString, receiving intVal:
if intVal is equal to zero:
return "0"
set strVal to ""
while intVal is greater than zero:
if intVal is odd:
prefix "1" to strVal
else:
prefix "0" to strVal
divide intVal by two, rounding down
return strVal
which will construct your binary string based on the decimal value. Just keep in mind that's a generic bit of pseudo-code which may not be the most efficient way of doing it though, with the iterations you seem to be proposing, it won't make much difference. It's really just meant as a guideline on how it could be done.
The general idea is to use code from (in order of preference):
the language or built-in libraries.
third-party libraries with suitable licenses.
your own collection.
something new you need to write (and save in your own collection for later).
s = "1" + s
and s = "0" + s
lines. Each makes an unnecessary copy of s. You should reverse the string just before you return it instead.
'{0:b}'.format(42)
, the slow method was simply an example of how to do it generically, which may or may not be O(n^2) depending on the actual language used. It only looks like Python since Python is an ideal pseudo-code language so I'll change that to make it clear.
s = "1" + s
wasn't O(N) when s
is a string type. Maybe a language where all strings are stored backwards or each char is a node in a linked list? For any typical language a string is basically an array of chars. In that case prefixing a string requires that a copy is made, how else are you going to put the character before the other characters?
If you want a textual representation without the 0b-prefix, you could use this:
get_bin = lambda x: format(x, 'b')
print(get_bin(3))
>>> '11'
print(get_bin(-3))
>>> '-11'
When you want a n-bit representation:
get_bin = lambda x, n: format(x, 'b').zfill(n)
>>> get_bin(12, 32)
'00000000000000000000000000001100'
>>> get_bin(-12, 32)
'-00000000000000000000000000001100'
Alternatively, if you prefer having a function:
def get_bin(x, n=0):
"""
Get the binary representation of x.
Parameters
----------
x : int
n : int
Minimum number of digits. If x needs less digits in binary, the rest
is filled with zeros.
Returns
-------
str
"""
return format(x, 'b').zfill(n)
format(integer, 'b')
. bin()
is a debugging tool, specifically aimed at producing the Python binary integer literal syntax, format()
is meant to produce specific formats.
bin()
is a debugging tool aimed at producing the Python binary integer literal syntax? I couldn't find that in the documentation.
oct()
and hex()
.
str.zfill()
you could use str.format()
or format()
with a dynamic second argument: '{0:0{1}b}'.format(x, n)
or format(b, '0{}b'.format(n))
.
zfill
is easier to read and understand than the dynamic second argument, so I'll keep that.
I am surprised there is no mention of a nice way to accomplish this using formatting strings that are supported in Python 3.6 and higher. TLDR:
>>> number = 1
>>> f'0b{number:08b}'
'0b00000001'
Longer story
This is functionality of formatting strings available from Python 3.6:
>>> x, y, z = 1, 2, 3
>>> f'{x} {y} {2*z}'
'1 2 6'
You can request binary as well:
>>> f'{z:b}'
'11'
Specify the width:
>>> f'{z:8b}'
' 11'
Request zero padding:
f'{z:08b}'
'00000011'
And add common prefix to signify binary number:
>>> f'0b{z:08b}'
'0b00000011'
You can also let Python add the prefix for you but I do not like it so much as the version above because you have to take the prefix into width consideration:
>>> f'{z:#010b}'
'0b00000011'
More info is available in official documentation on Formatted string literals and Format Specification Mini-Language.
f'0b{z:09_b}'
=> '0b0000_0011'
f'{z:08b}'[::-1]
to achieve the least significant byte first ordering, however this will IMHO in most cases cause just confusion...
As a reference:
def toBinary(n):
return ''.join(str(1 & int(n) >> i) for i in range(64)[::-1])
This function can convert a positive integer as large as 18446744073709551615
, represented as string '1111111111111111111111111111111111111111111111111111111111111111'
.
It can be modified to serve a much larger integer, though it may not be as handy as "{0:b}".format()
or bin()
.
This is for python 3 and it keeps the leading zeros !
print(format(0, '08b'))
https://i.stack.imgur.com/DootV.png
A simple way to do that is to use string format, see this page.
>> "{0:b}".format(10)
'1010'
And if you want to have a fixed length of the binary string, you can use this:
>> "{0:{fill}8b}".format(10, fill='0')
'00001010'
If two's complement is required, then the following line can be used:
'{0:{fill}{width}b}'.format((x + 2**n) % 2**n, fill='0', width=n)
where n is the width of the binary string.
one-liner with lambda:
>>> binary = lambda n: '' if n==0 else binary(n/2) + str(n%2)
test:
>>> binary(5)
'101'
EDIT:
but then :(
t1 = time()
for i in range(1000000):
binary(i)
t2 = time()
print(t2 - t1)
# 6.57236599922
in compare to
t1 = time()
for i in range(1000000):
'{0:b}'.format(i)
t2 = time()
print(t2 - t1)
# 0.68017411232
''
with '0'
, but it will add a leading 0 for any number.
As the preceding answers mostly used format(), here is an f-string implementation.
integer = 7
bit_count = 5
print(f'{integer:0{bit_count}b}')
Output:
00111
For convenience here is the python docs link for formatted string literals: https://docs.python.org/3/reference/lexical_analysis.html#f-strings.
Summary of alternatives:
n=42
assert "-101010" == format(-n, 'b')
assert "-101010" == "{0:b}".format(-n)
assert "-101010" == (lambda x: x >= 0 and str(bin(x))[2:] or "-" + str(bin(x))[3:])(-n)
assert "0b101010" == bin(n)
assert "101010" == bin(n)[2:] # But this won't work for negative numbers.
Contributors include John Fouhy, Tung Nguyen, mVChr, Martin Thoma. and Martijn Pieters.
str.format()
just to format one value is overkill. Go straight to the format()
function: format(n, 'b')
. No need to parse out the placeholder and match it to an argument that way.
>>> format(123, 'b')
'1111011'
For those of us who need to convert signed integers (range -2**(digits-1) to 2**(digits-1)-1) to 2's complement binary strings, this works:
def int2bin(integer, digits):
if integer >= 0:
return bin(integer)[2:].zfill(digits)
else:
return bin(2**digits + integer)[2:]
This produces:
>>> int2bin(10, 8)
'00001010'
>>> int2bin(-10, 8)
'11110110'
>>> int2bin(-128, 8)
'10000000'
>>> int2bin(127, 8)
'01111111'
you can do like that :
bin(10)[2:]
or :
f = str(bin(10))
c = []
c.append("".join(map(int, f[2:])))
print c
Using numpy pack/unpackbits, they are your best friends.
Examples
--------
>>> a = np.array([[2], [7], [23]], dtype=np.uint8)
>>> a
array([[ 2],
[ 7],
[23]], dtype=uint8)
>>> b = np.unpackbits(a, axis=1)
>>> b
array([[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 1, 1],
[0, 0, 0, 1, 0, 1, 1, 1]], dtype=uint8)
uint8
array into a binary-valued output array. So good for values up to 255.
Yet another solution with another algorithm, by using bitwise operators.
def int2bin(val):
res=''
while val>0:
res += str(val&1)
val=val>>1 # val=val/2
return res[::-1] # reverse the string
A faster version without reversing the string.
def int2bin(val):
res=''
while val>0:
res = chr((val&1) + 0x30) + res
val=val>>1
return res
The accepted answer didn't address negative numbers, which I'll cover. In addition to the answers above, you can also just use the bin and hex functions. And in the opposite direction, use binary notation:
>>> bin(37)
'0b100101'
>>> 0b100101
37
But with negative numbers, things get a bit more complicated. The question doesn't specify how you want to handle negative numbers.
Python just adds a negative sign so the result for -37 would be this:
>>> bin(-37)
'-0b100101'
In computer/hardware binary data, negative signs don't exist. All we have is 1's and 0's. So if you're reading or producing binary streams of data to be processed by other software/hardware, you need to first know the notation being used.
One notation is sign-magnitude notation, where the first bit represents the negative sign, and the rest is the actual value. In that case, -37 would be 0b1100101
and 37 would be 0b0100101
. This looks like what python produces, but just add a 0 or 1 in front for positive / negative numbers.
More common is Two's complement notation, which seems more complicated and the result is very different from python's string formatting. You can read the details in the link, but with an 8bit signed integer -37 would be 0b11011011
and 37 would be 0b00100101
.
Python has no easy way to produce these binary representations. You can use numpy to turn Two's complement binary values into python integers:
>>> import numpy as np
>>> np.int8(0b11011011)
-37
>>> np.uint8(0b11011011)
219
>>> np.uint8(0b00100101)
37
>>> np.int8(0b00100101)
37
But I don't know an easy way to do the opposite with builtin functions. The bitstring package can help though.
>>> from bitstring import BitArray
>>> arr = BitArray(int=-37, length=8)
>>> arr.uint
219
>>> arr.int
-37
>>> arr.bin
'11011011'
>>> BitArray(bin='11011011').int
-37
>>> BitArray(bin='11011011').uint
219
Python 3.6 added a new string formatting approach called formatted string literals or “f-strings”. Example:
name = 'Bob'
number = 42
f"Hello, {name}, your number is {number:>08b}"
Output will be 'Hello, Bob, your number is 00001010!'
A discussion of this question can be found here - Here
Unless I'm misunderstanding what you mean by binary string I think the module you are looking for is struct
def binary(decimal) :
otherBase = ""
while decimal != 0 :
otherBase = str(decimal % 2) + otherBase
decimal //= 2
return otherBase
print binary(10)
output:
1010
numpy.binary_repr(num, width=None)
Examples from the documentation link above:
>>> np.binary_repr(3) '11' >>> np.binary_repr(-3) '-11' >>> np.binary_repr(3, width=4) '0011' The two’s complement is returned when the input number is negative and width is specified: >>> np.binary_repr(-3, width=3) '101' >>> np.binary_repr(-3, width=5) '11101'
Here is the code I've just implemented. This is not a method but you can use it as a ready-to-use function!
def inttobinary(number):
if number == 0:
return str(0)
result =""
while (number != 0):
remainder = number%2
number = number/2
result += str(remainder)
return result[::-1] # to invert the string
n=input()
print(bin(n).replace("0b", ""))
Somewhat similar solution
def to_bin(dec):
flag = True
bin_str = ''
while flag:
remainder = dec % 2
quotient = dec / 2
if quotient == 0:
flag = False
bin_str += str(remainder)
dec = quotient
bin_str = bin_str[::-1] # reverse the string
return bin_str
here is simple solution using the divmod() fucntion which returns the reminder and the result of a division without the fraction.
def dectobin(number):
bin = ''
while (number >= 1):
number, rem = divmod(number, 2)
bin = bin + str(rem)
return bin
dectobin(10)
resulted in '0101'
Here's yet another way using regular math, no loops, only recursion. (Trivial case 0 returns nothing).
def toBin(num):
if num == 0:
return ""
return toBin(num//2) + str(num%2)
print ([(toBin(i)) for i in range(10)])
['', '1', '10', '11', '100', '101', '110', '111', '1000', '1001']
0
returns ''
, it should be '0'
...
Calculator with all neccessary functions for DEC,BIN,HEX: (made and tested with Python 3.5)
You can change the input test numbers and get the converted ones.
# CONVERTER: DEC / BIN / HEX
def dec2bin(d):
# dec -> bin
b = bin(d)
return b
def dec2hex(d):
# dec -> hex
h = hex(d)
return h
def bin2dec(b):
# bin -> dec
bin_numb="{0:b}".format(b)
d = eval(bin_numb)
return d,bin_numb
def bin2hex(b):
# bin -> hex
h = hex(b)
return h
def hex2dec(h):
# hex -> dec
d = int(h)
return d
def hex2bin(h):
# hex -> bin
b = bin(h)
return b
## TESTING NUMBERS
numb_dec = 99
numb_bin = 0b0111
numb_hex = 0xFF
## CALCULATIONS
res_dec2bin = dec2bin(numb_dec)
res_dec2hex = dec2hex(numb_dec)
res_bin2dec,bin_numb = bin2dec(numb_bin)
res_bin2hex = bin2hex(numb_bin)
res_hex2dec = hex2dec(numb_hex)
res_hex2bin = hex2bin(numb_hex)
## PRINTING
print('------- DECIMAL to BIN / HEX -------\n')
print('decimal:',numb_dec,'\nbin: ',res_dec2bin,'\nhex: ',res_dec2hex,'\n')
print('------- BINARY to DEC / HEX -------\n')
print('binary: ',bin_numb,'\ndec: ',numb_bin,'\nhex: ',res_bin2hex,'\n')
print('----- HEXADECIMAL to BIN / HEX -----\n')
print('hexadec:',hex(numb_hex),'\nbin: ',res_hex2bin,'\ndec: ',res_hex2dec,'\n')
To calculate binary of numbers:
print("Binary is {0:>08b}".format(16))
To calculate the Hexa decimal of a number:
print("Hexa Decimal is {0:>0x}".format(15))
To Calculate all the binary no till 16::
for i in range(17):
print("{0:>2}: binary is {0:>08b}".format(i))
To calculate Hexa decimal no till 17
for i in range(17):
print("{0:>2}: Hexa Decimal is {0:>0x}".format(i))
##as 2 digit is enogh for hexa decimal representation of a number
try:
while True:
p = ""
a = input()
while a != 0:
l = a % 2
b = a - l
a = b / 2
p = str(l) + p
print(p)
except:
print ("write 1 number")
I found a method using matrix operation to convert decimal to binary.
import numpy as np
E_mat = np.tile(E,[1,M])
M_order = pow(2,(M-1-np.array(range(M)))).T
bindata = np.remainder(np.floor(E_mat /M_order).astype(np.int),2)
E
is input decimal data,M
is the binary orders. bindata
is output binary data, which is in a format of 1 by M binary matrix.
Success story sharing
str.format()
just to format one value is overkill. Go straight to theformat()
function:format(n, 'b')
. There is no need to parse out the placeholder and match it to an argument, go straight for the value formatting operation itself. Only usestr.format()
if you need to place the formatted result in a longer string (e.g. use it as a template).0
to the formatting string:format(10, '016b')
formats to 16 digits with leading zeros."{:08b}".format(37)
0b10100101
. But with an unsigned integer, that value would be 165. So it is not this simple. The answer should reflect this.