ChatGPT解决这个技术问题 Extra ChatGPT

Why is (a*b != 0) faster than (a != 0 && b != 0) in Java?

I'm writing some code in Java where, at some point, the flow of the program is determined by whether two int variables, "a" and "b", are non-zero (note: a and b are never negative, and never within integer overflow range).

I can evaluate it with

if (a != 0 && b != 0) { /* Some code */ }

Or alternatively

if (a*b != 0) { /* Some code */ }

Because I expect that piece of code to run millions of times per run, I was wondering which one would be faster. I did the experiment by comparing them on a huge randomly generated array, and I was also curious to see how the sparsity of the array (fraction of data = 0) would affect the results:

long time;
final int len = 50000000;
int arbitrary = 0;
int[][] nums = new int[2][len];

for (double fraction = 0 ; fraction <= 0.9 ; fraction += 0.0078125) {
    for(int i = 0 ; i < 2 ; i++) {
        for(int j = 0 ; j < len ; j++) {
            double random = Math.random();

            if(random < fraction) nums[i][j] = 0;
            else nums[i][j] = (int) (random*15 + 1);
        }
    }

    time = System.currentTimeMillis();

    for(int i = 0 ; i < len ; i++) {
        if( /*insert nums[0][i]*nums[1][i]!=0 or nums[0][i]!=0 && nums[1][i]!=0*/ ) arbitrary++;
    }
    System.out.println(System.currentTimeMillis() - time);
}

And the results show that if you expect "a" or "b" to be equal to 0 more than ~3% of the time, a*b != 0 is faster than a!=0 && b!=0:

https://i.stack.imgur.com/POHYD.png

I'm curious to know why. Could anyone shed some light? Is it the compiler or is it at the hardware level?

Edit: Out of curiosity... now that I learned about branch prediction, I was wondering what the analog comparison would show for a OR b is non-zero:

https://i.stack.imgur.com/GpJoM.png

We do see the same effect of branch prediction as expected, interestingly the graph is somewhat flipped along the X-axis.

Update

1- I added !(a==0 || b==0) to the analysis to see what happens.

2- I also included a != 0 || b != 0, (a+b) != 0 and (a|b) != 0 out of curiosity, after learning about branch prediction. But they are not logically equivalent to the other expressions, because only a OR b needs to be non-zero to return true, so they are not meant to be compared for processing efficiency.

3- I also added the actual benchmark that I used for the analysis, which is just iterating an arbitrary int variable.

4- Some people were suggesting to include a != 0 & b != 0 as opposed to a != 0 && b != 0, with the prediction that it would behave more closely to a*b != 0 because we would remove the branch prediction effect. I didn't know that & could be used with boolean variables, I thought it was only used for binary operations with integers.

Note: In the context that I was considering all this, int overflow is not an issue, but that's definitely an important consideration in general contexts.

CPU: Intel Core i7-3610QM @ 2.3GHz

Java version: 1.8.0_45 Java(TM) SE Runtime Environment (build 1.8.0_45-b14) Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode)

What about if (!(a == 0 || b == 0))? Microbenchmarks are notoriously unreliable, this is unlikely to really be measurable (~3% sounds like a margin of error to me).
Or a != 0 & b != 0.
Branching is slow if the predicted branch is wrong. a*b!=0 has one less branch
(1<<16) * (1<<16) == 0 yet both are different from zero.
@Gene: Your proposed optimization is not valid. Even ignoring overflow, a*b is zero if one of a and b is zero; a|b is zero only if both are.

S
Stephen C

I'm ignoring the issue that your benchmarking might be flawed, and taking the result at face value.

Is it the compiler or is it at the hardware level?

That latter, I think:

  if (a != 0 && b != 0)

will compile to 2 memory loads and two conditional branches

  if (a * b != 0)

will compile to 2 memory loads, a multiply and one conditional branch.

The multiply is likely to be faster than the second conditional branch if the hardware-level branch prediction is ineffective. As you increase the ratio ... the branch prediction is becoming less effective.

The reason that conditional branches are slower is that they cause the instruction execution pipeline to stall. Branch prediction is about avoiding the stall by predicting which way the branch is going to go and speculatively choosing the next instruction based on that. If the prediction fails, there is a delay while the instruction for the other direction is loaded.

(Note: the above explanation is oversimplified. For a more accurate explanation, you need to look at the literature provided by the CPU manufacturer for assembly language coders and compiler writers. The Wikipedia page on Branch Predictors is good background.)

However, there is one thing that you need to be careful about with this optimization. Are there any values where a * b != 0 will give the wrong answer? Consider cases where computing the product results in integer overflow.

UPDATE

Your graphs tend to confirm what I said.

There is also a "branch prediction" effect in the conditional branch a * b != 0 case, and this comes out in the graphs.

If you project the curves beyond 0.9 on the X-axis, it looks like 1) they will meet at about 1.0 and 2) the meeting point will be at roughly the same Y value as for X = 0.0.

UPDATE 2

I don't understand why the curves are different for the a + b != 0 and the a | b != 0 cases. There could be something clever in the branch predictors logic. Or it could indicate something else.

(Note that this kind of thing can be specific to a particular chip model number or even version. The results of your benchmarks could be different on other systems.)

However, they both have the advantage of working for all non-negative values of a and b.


@DebosmitRay - 1) There should be no SW's. The intermediate results will be kept in a register. 2) In the second case, there are two available branches: one to execute "some code" and the other to skip to the next statement after the if.
@StephenC you are right to be confused about a+b and a|b, because the curves are the same, I think it's the colors being really close. Apologies to color blind people!
@njzk2 from probability perspective those cases should be symmetric according to axis on 50% (probability of zero of a&b and a|b). They are, but not perfectly, that is the puzzle.
@StephenC The reason why a*b != 0 and a+b != 0 benchmark differently is because a+b != 0 is not at all equivalent and should never have been benchmarked. For example, with a = 1, b = 0, the first expression evaluates to false but the second evaluates to true. The multiply acts sort of like an and operator, whereas the add acts sort of like an or operator.
@AntonínLejsek I think the probabilities would differ. If you have n zeros then the likelihood of both a and b being zero increases with n. In an AND operation, with higher n the probability of one of them being non-zero increases and the condition is met. This is opposite for an OR operation (probability of either one of them being zero increases with n). This is based on a mathematical perspective. I am not sure if that's how the hardware works.
B
Boann

I think your benchmark has some flaws and might not be useful for inferring about real programs. Here are my thoughts:

(a|b)!=0 and (a+b)!=0 test if either value is non-zero, whereas a != 0 && b != 0 and (a*b)!=0 test if both are non-zero. So you are not comparing the timing of just the arithmetic: if the condition is true more often, it causes more executions of the if body, which takes more time too.

(a+b)!=0 will do the wrong thing for positive and negative values that sum to zero, so you can't use it in the general case, even if it works here. Also for a=b=0x80000000 (MIN_VALUE), the only set bit will overflow out the top.

Similarly, (a*b)!=0 will do the wrong thing for values that overflow. Random example: 196608 * 327680 is 0 because the true result happens to be divisible by 232, so its low 32 bits are 0, and those bits are all you get if it's an int operation.

The VM will optimize the expression during the first few runs of the outer (fraction) loop, when fraction is 0, when the branches are almost never taken. The optimizer may do different things if you start fraction at 0.5.

Unless the VM is able to eliminate some of the array bounds checks here, there are four other branches in the expression just due to the bounds checks, and that's a complicating factor when trying to figure out what's happening at a low level. You might get different results if you split the two-dimensional array into two flat arrays, changing nums[0][i] and nums[1][i] to nums0[i] and nums1[i].

CPU branch predictors detect short patterns in the data, or runs of all branches being taken or not taken. Your randomly generated benchmark data is the worst-case scenario for a branch predictor. If real-world data has a predictable pattern, or it has long runs of all-zero and all-non-zero values, the branches could cost much less.

The particular code that is executed after the condition is met can affect the performance of evaluating the condition itself, because it affects things like whether or not the loop can be unrolled, which CPU registers are available, and if any of the fetched nums values need to be reused after evaluating the condition. Merely incrementing a counter in the benchmark is not a perfect placeholder for what real code would do.

System.currentTimeMillis() is on most systems not more accurate than +/- 10 ms. System.nanoTime() is usually more accurate.

There are lots of uncertainties, and it's always hard to say anything definite with these sorts of micro-optimizations because a trick that is faster on one VM or CPU can be slower on another. If running the 32-bit HotSpot JVM, rather than the 64-bit version, be aware that it comes in two flavors: with the "Client" VM having different (weaker) optimizations compared to the "Server" VM.

If you can disassemble the machine code generated by the VM, do that rather than trying to guess what it does!


I think it's still worth mentioning that a|b != 0 doesn't have any of the problems of a+b. Regardless of the footnote about C++ compilers optimizing a||b into a|b when it's safe, e.g. NULL deref impossible. (godbolt.org/z/EKnYbo7En) That's something Java implementations could do; something to keep an eye out for in the future if not now.
P
Pagefault

The answers here are good, though I had an idea that might improve things.

Since the two branches and associated branch prediction are the likely culprit, we may be able to reduce the branching to a single branch without changing the logic at all.

bool aNotZero = (nums[0][i] != 0);
bool bNotZero = (nums[1][i] != 0);
if (aNotZero && bNotZero) { /* Some code */ }

It may also work to do

int a = nums[0][i];
int b = nums[1][i];
if (a != 0 && b != 0) { /* Some code */ }

The reason being, by the rules of short circuiting, if the first boolean is false, the second should not be evaluated. It has to perform an extra branch to avoid evaluating nums[1][i] if nums[0][i] was false. Now, you may not care that nums[1][i] gets evaluated, but the compiler can't be certain that it won't throw an out of range or null ref when you do. By reducing the if block to simple bools, the compiler may be smart enough to realize that evaluating the second boolean unnecessarily won't have negative side effects.


Upvoted although I have a feeling this doesn't quite answer the question.
That's a way to introduce a branch without changing the logic from non-branching (if the way you obtained a and b had side-effects you would have kept them). You still have && so you still have a branch.
If the combined condition is more predictable than both separately, you should be avoiding short-circuit eval. e.g. doing aZero = (nums[0][i] == 0) etc. and if (! (aZero | bZero) ) or something. Or I guess Java without implicit bool->int conversion would need nums[...] == 0 ? 1 : 0. That might require several asm instructions to actually implement, so would be slower than 2 branches if the first one (or both) predicted well.
Note that Java doesn't have a bool type; it's called boolean.
S
Sanket Gupte

When we take the multiplication, even if one number is 0, then the product is 0. While writing

    (a*b != 0)

It evaluates the result of the product thereby eliminating the first few occurrences of the iteration starting from 0. As a result the comparisons are less than that when the condition is

   (a != 0 && b != 0)

Where every element is compared with 0 and evaluated. Hence the time required is less. But I believe that the second condition might give you more accurate solution.


In second expression if a is zero then b needs not to be evaluated since whole expression is already false. So every element is compared is not true.
S
StackedCrooked

You are using randomized input data which makes the branches unpredictable. In practice branches are often (~90%) predictable so in real code the branchful code is likely to be faster.

That said. I don't see how a*b != 0 can be faster than (a|b) != 0. Generally integer multiplication is more expensive than a bitwise OR. But things like this occasionally get weird. See for example the "Example 7: Hardware complexities" example from Gallery of Processor Cache Effects.


& is not a "bitwise OR" but (in this case) a "logical AND" because both operands are booleans and it's not | ;-)
@siegi TIL Java '&' is actually a logical AND without short-circuiting.
& isn't a logical AND, it's a bitwise AND. Same as in C. So a & b is not equivalent to a && b. But a|b is equivalent to a || b, just because of the difference in how "any bits set in either" vs. "no bits set" vs. "no intersecting bits" works.
@PeterCordes: In the special case "both operands are booleans" which siegi explicitly claimed, there is no difference between logical AND and bitwise AND. For booleans, it is correct to say that & is logical AND without short-circuit, and && is logical AND with short-circuit behavior.
Yes, but the reply to siegi's correct comment omits mention of that special case when saying "today I learned (TIL)". It is interesting that since Java doesn't do implicit conversion between boolean and int, it's not just a "logical AND" in quotes, i.e. not a bitwise AND that happens to be used on 1-bit operands like in C++. In Java it's truly a logical AND when used on boolean operands, and you can't do true & 123.
u
user16320675

I know the question is old, but for curiosity and training I did some tests using JMH. The results were slightly different:

bit-wise OR (a | b != 0) and multiplication (a * b != 0) were the fastest;

normal AND (a!=0 & b!=0) was almost as good as multiplication

short-circuiting AND and OR (a!=0 && b!=0, !(a!=0 || b!=0) were slowest

Disclaimer: I am not even near an expert in JMH.

Here the code, I tried to reproduce the code posted in question, added bit-wise OR:

@Warmup(iterations = 5, time = 100, timeUnit = TimeUnit.MILLISECONDS)
@Measurement(iterations = 10, time = 100, timeUnit = TimeUnit.MILLISECONDS)
@Fork(value = 3)
@BenchmarkMode(Mode.AverageTime)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
@State(Scope.Benchmark)
public class MultAnd {
    
    public static void main(String[] args) throws RunnerException {
        Options opt = new OptionsBuilder()
            .include(MultAnd.class.getSimpleName())
            .build();
        
        new Runner(opt).run();
    }

    private static final int size = 50_000_000;
    
    @Param({"0.00", "0.10", "0.20", "0.30", "0.40", "0.45", 
            "0.50", "0.55", "0.60", "0.70", "0.80", "0.90", 
            "1.00"})
    private double fraction;

    private int[][] nums;

    @Setup
    public void setup() {
        nums = new int[2][size];
        for(int i = 0 ; i < 2 ; i++) {
            for(int j = 0 ; j < size ; j++) {
                double random = Math.random();
                if (random < fraction) 
                    nums[i][j] = 0;
                else 
                    nums[i][j] = (int) (random*15 + 1);
            }
        }
    }
    
    @Benchmark
    public int and() {
        int s = 0;
        for (int i = 0; i < size; i++) {
            if ((nums[0][i]!=0) & (nums[1][i]!=0))
                s++;
        }
        return s;
    }
    
    @Benchmark
    public int andAnd() {
        int s = 0;
        for (int i = 0; i < size; i++) {
            if ((nums[0][i]!=0) && (nums[1][i]!=0))
                s++;
        }
        return s;
    }
    
    @Benchmark
    public int bitOr() {
        int s = 0;
        for (int i = 0; i < size; i++) {
            if ((nums[0][i] | nums[1][i]) != 0)
                s++;
        }
        return s;
    }
    
    @Benchmark
    public int mult() {
        int s = 0;
        for (int i = 0; i < size; i++) {
            if (nums[0][i]*nums[1][i] != 0)
                s++;
        }
        return s;
    }
    
    @Benchmark
    public int notOrOr() {
        int s = 0;
        for (int i = 0; i < size; i++) {
            if (!((nums[0][i]!=0) || (nums[1][i]!=0)))
                s++;
        }
        return s;
    }
}

And the the results:

REMEMBER: The numbers below are just data. To gain reusable insights, you need to follow up on
why the numbers are the way they are. Use profilers (see -prof, -lprof), design factorial
experiments, perform baseline and negative tests that provide experimental control, make sure
the benchmarking environment is safe on JVM/OS/HW level, ask for reviews from the domain experts.
Do not assume the numbers tell you what you want them to tell.

Benchmark        (fraction)  Mode  Cnt    Score    Error  Units
MultAnd.and            0.00  avgt   30   33.238 ±  0.883  ms/op
MultAnd.and            0.10  avgt   30   48.011 ±  1.635  ms/op
MultAnd.and            0.20  avgt   30   48.284 ±  1.797  ms/op
MultAnd.and            0.30  avgt   30   47.969 ±  1.463  ms/op
MultAnd.and            0.40  avgt   30   48.999 ±  2.881  ms/op
MultAnd.and            0.45  avgt   30   47.804 ±  1.053  ms/op
MultAnd.and            0.50  avgt   30   48.332 ±  1.990  ms/op
MultAnd.and            0.55  avgt   30   47.457 ±  1.210  ms/op
MultAnd.and            0.60  avgt   30  127.530 ±  3.104  ms/op
MultAnd.and            0.70  avgt   30   92.630 ±  1.471  ms/op
MultAnd.and            0.80  avgt   30   69.458 ±  1.609  ms/op
MultAnd.and            0.90  avgt   30   55.421 ±  1.443  ms/op
MultAnd.and            1.00  avgt   30   30.672 ±  1.387  ms/op
MultAnd.andAnd         0.00  avgt   30   33.187 ±  0.978  ms/op
MultAnd.andAnd         0.10  avgt   30  110.943 ±  1.435  ms/op
MultAnd.andAnd         0.20  avgt   30  177.527 ±  2.353  ms/op
MultAnd.andAnd         0.30  avgt   30  226.247 ±  1.879  ms/op
MultAnd.andAnd         0.40  avgt   30  266.316 ± 18.647  ms/op
MultAnd.andAnd         0.45  avgt   30  258.120 ±  2.638  ms/op
MultAnd.andAnd         0.50  avgt   30  259.727 ±  3.532  ms/op
MultAnd.andAnd         0.55  avgt   30  248.706 ±  1.419  ms/op
MultAnd.andAnd         0.60  avgt   30  229.825 ±  1.256  ms/op
MultAnd.andAnd         0.70  avgt   30  177.911 ±  2.787  ms/op
MultAnd.andAnd         0.80  avgt   30  121.303 ±  2.724  ms/op
MultAnd.andAnd         0.90  avgt   30   67.914 ±  1.589  ms/op
MultAnd.andAnd         1.00  avgt   30   15.892 ±  0.349  ms/op
MultAnd.bitOr          0.00  avgt   30   33.271 ±  1.896  ms/op
MultAnd.bitOr          0.10  avgt   30   35.597 ±  1.536  ms/op
MultAnd.bitOr          0.20  avgt   30   42.366 ±  1.641  ms/op
MultAnd.bitOr          0.30  avgt   30   58.385 ±  0.778  ms/op
MultAnd.bitOr          0.40  avgt   30   85.567 ±  1.678  ms/op
MultAnd.bitOr          0.45  avgt   30   32.152 ±  1.345  ms/op
MultAnd.bitOr          0.50  avgt   30   32.190 ±  1.357  ms/op
MultAnd.bitOr          0.55  avgt   30   32.335 ±  1.384  ms/op
MultAnd.bitOr          0.60  avgt   30   31.910 ±  1.026  ms/op
MultAnd.bitOr          0.70  avgt   30   31.783 ±  0.807  ms/op
MultAnd.bitOr          0.80  avgt   30   31.671 ±  0.745  ms/op
MultAnd.bitOr          0.90  avgt   30   31.329 ±  0.708  ms/op
MultAnd.bitOr          1.00  avgt   30   30.530 ±  0.534  ms/op
MultAnd.mult           0.00  avgt   30   30.859 ±  0.735  ms/op
MultAnd.mult           0.10  avgt   30   33.933 ±  0.887  ms/op
MultAnd.mult           0.20  avgt   30   34.243 ±  0.917  ms/op
MultAnd.mult           0.30  avgt   30   33.825 ±  1.155  ms/op
MultAnd.mult           0.40  avgt   30   34.309 ±  1.334  ms/op
MultAnd.mult           0.45  avgt   30   33.709 ±  1.277  ms/op
MultAnd.mult           0.50  avgt   30   37.699 ±  4.029  ms/op
MultAnd.mult           0.55  avgt   30   36.374 ±  2.948  ms/op
MultAnd.mult           0.60  avgt   30  100.354 ±  1.553  ms/op
MultAnd.mult           0.70  avgt   30   69.570 ±  1.441  ms/op
MultAnd.mult           0.80  avgt   30   47.181 ±  1.567  ms/op
MultAnd.mult           0.90  avgt   30   33.552 ±  0.999  ms/op
MultAnd.mult           1.00  avgt   30   30.775 ±  0.548  ms/op
MultAnd.notOrOr        0.00  avgt   30   15.701 ±  0.254  ms/op
MultAnd.notOrOr        0.10  avgt   30   68.052 ±  1.433  ms/op
MultAnd.notOrOr        0.20  avgt   30  120.393 ±  2.299  ms/op
MultAnd.notOrOr        0.30  avgt   30  177.729 ±  2.438  ms/op
MultAnd.notOrOr        0.40  avgt   30  229.547 ±  1.859  ms/op
MultAnd.notOrOr        0.45  avgt   30  250.660 ±  4.810  ms/op
MultAnd.notOrOr        0.50  avgt   30  258.760 ±  2.190  ms/op
MultAnd.notOrOr        0.55  avgt   30  258.010 ±  1.018  ms/op
MultAnd.notOrOr        0.60  avgt   30  254.732 ±  2.076  ms/op
MultAnd.notOrOr        0.70  avgt   30  227.148 ±  2.040  ms/op
MultAnd.notOrOr        0.80  avgt   30  180.193 ±  4.659  ms/op
MultAnd.notOrOr        0.90  avgt   30  112.212 ±  3.111  ms/op
MultAnd.notOrOr        1.00  avgt   30   33.458 ±  0.952  ms/op

https://i.stack.imgur.com/WJUZK.png