It is well-known that NaNs propagate in arithmetic, but I couldn't find any demonstrations, so I wrote a small test:
#include <limits>
#include <cstdio>
int main(int argc, char* argv[]) {
float qNaN = std::numeric_limits<float>::quiet_NaN();
float neg = -qNaN;
float sub1 = 6.0f - qNaN;
float sub2 = qNaN - 6.0f;
float sub3 = qNaN - qNaN;
float add1 = 6.0f + qNaN;
float add2 = qNaN + qNaN;
float div1 = 6.0f / qNaN;
float div2 = qNaN / 6.0f;
float div3 = qNaN / qNaN;
float mul1 = 6.0f * qNaN;
float mul2 = qNaN * qNaN;
printf(
"neg: %f\nsub: %f %f %f\nadd: %f %f\ndiv: %f %f %f\nmul: %f %f\n",
neg, sub1,sub2,sub3, add1,add2, div1,div2,div3, mul1,mul2
);
return 0;
}
The example (running live here) produces basically what I would expect (the negative is a little weird, but it kind of makes sense):
neg: -nan
sub: nan nan nan
add: nan nan
div: nan nan nan
mul: nan nan
MSVC 2015 produces something similar. However, Intel C++ 15 produces:
neg: -nan(ind)
sub: nan nan 0.000000
add: nan nan
div: nan nan nan
mul: nan nan
Specifically, qNaN - qNaN == 0.0
.
This... can't be right, right? What do the relevant standards (ISO C, ISO C++, IEEE 754) say about this, and why is there a difference in behavior between the compilers?
Nan-NaN
is NaN
. Perl and Scala also behave similarly.
-ffast-math
on gcc)?
The default floating point handling in Intel C++ compiler is /fp:fast
, which handles NaN
's unsafely (which also results in NaN == NaN
being true
for example). Try specifying /fp:strict
or /fp:precise
and see if that helps.
This . . . can't be right, right? My question: what do the relevant standards (ISO C, ISO C++, IEEE 754) say about this?
Petr Abdulin already answered why the compiler gives a 0.0
answer.
Here is what IEEE-754:2008 says:
(6.2 Operations with NaNs) "[...] For an operation with quiet NaN inputs, other than maximum and minimum operations, if a floating-point result is to be delivered the result shall be a quiet NaN which should be one of the input NaNs."
So the only valid result for the subtraction of two quiet NaN operand is a quiet NaN; any other result is not valid.
The C Standard says:
(C11, F.9.2 Expression transformations p1) "[...] x − x → 0. 0 "The expressions x − x and 0. 0 are not equivalent if x is a NaN or infinite"
(where here NaN denotes a quiet NaN as per F.2.1p1 "This specification does not define the behavior of signaling NaNs. It generally uses the term NaN to denote quiet NaNs")
Since I see an answer impugning the standards compliance of Intel's compiler, and no one else has mentioned this, I will point out that both GCC and Clang have a mode in which they do something quite similar. Their default behavior is IEEE-compliant —
$ g++ -O2 test.cc && ./a.out
neg: -nan
sub: nan nan nan
add: nan nan
div: nan nan nan
mul: nan nan
$ clang++ -O2 test.cc && ./a.out
neg: -nan
sub: -nan nan nan
add: nan nan
div: nan nan nan
mul: nan nan
— but if you ask for speed at the expense of correctness, you get what you ask for —
$ g++ -O2 -ffast-math test.cc && ./a.out
neg: -nan
sub: nan nan 0.000000
add: nan nan
div: nan nan 1.000000
mul: nan nan
$ clang++ -O2 -ffast-math test.cc && ./a.out
neg: -nan
sub: -nan nan 0.000000
add: nan nan
div: nan nan nan
mul: nan nan
I think it is entirely fair to criticize ICC's choice of default, but I would not read the entire Unix wars back into that decision.
-ffast-math
, gcc
is not complying to ISO 9899:2011 with respect to floating point arithmetic any more.
Success story sharing
/fp:fast
: if you want something safe, you should probably better avoid NaNs turning up in the first place, and generally don't use==
with floating-point numbers. Relying on the weird semantics that IEEE754 assigns to NaN is asking for trouble.NaN==NaN
returnfalse
?