Suppose you have the following documents in my collection:
{
"_id":ObjectId("562e7c594c12942f08fe4192"),
"shapes":[
{
"shape":"square",
"color":"blue"
},
{
"shape":"circle",
"color":"red"
}
]
},
{
"_id":ObjectId("562e7c594c12942f08fe4193"),
"shapes":[
{
"shape":"square",
"color":"black"
},
{
"shape":"circle",
"color":"green"
}
]
}
Do query:
db.test.find({"shapes.color": "red"}, {"shapes.color": 1})
Or
db.test.find({shapes: {"$elemMatch": {color: "red"}}}, {"shapes.color": 1})
Returns matched document (Document 1), but always with ALL array items in shapes
:
{ "shapes":
[
{"shape": "square", "color": "blue"},
{"shape": "circle", "color": "red"}
]
}
However, I'd like to get the document (Document 1) only with the array that contains color=red
:
{ "shapes":
[
{"shape": "circle", "color": "red"}
]
}
How can I do this?
MongoDB 2.2's new $elemMatch
projection operator provides another way to alter the returned document to contain only the first matched shapes
element:
db.test.find(
{"shapes.color": "red"},
{_id: 0, shapes: {$elemMatch: {color: "red"}}});
Returns:
{"shapes" : [{"shape": "circle", "color": "red"}]}
In 2.2 you can also do this using the $ projection operator
, where the $
in a projection object field name represents the index of the field's first matching array element from the query. The following returns the same results as above:
db.test.find({"shapes.color": "red"}, {_id: 0, 'shapes.$': 1});
MongoDB 3.2 Update
Starting with the 3.2 release, you can use the new $filter
aggregation operator to filter an array during projection, which has the benefit of including all matches, instead of just the first one.
db.test.aggregate([
// Get just the docs that contain a shapes element where color is 'red'
{$match: {'shapes.color': 'red'}},
{$project: {
shapes: {$filter: {
input: '$shapes',
as: 'shape',
cond: {$eq: ['$$shape.color', 'red']}
}},
_id: 0
}}
])
Results:
[
{
"shapes" : [
{
"shape" : "circle",
"color" : "red"
}
]
}
]
The new Aggregation Framework in MongoDB 2.2+ provides an alternative to Map/Reduce. The $unwind
operator can be used to separate your shapes
array into a stream of documents that can be matched:
db.test.aggregate(
// Start with a $match pipeline which can take advantage of an index and limit documents processed
{ $match : {
"shapes.color": "red"
}},
{ $unwind : "$shapes" },
{ $match : {
"shapes.color": "red"
}}
)
Results in:
{
"result" : [
{
"_id" : ObjectId("504425059b7c9fa7ec92beec"),
"shapes" : {
"shape" : "circle",
"color" : "red"
}
}
],
"ok" : 1
}
$elemMatch
is another option. I actually got here by way of a Google Group question where $elemMatch wouldn't work because it only returns the first match per document.
{ $project : { shapes : 1 } }
- which seemed to work and would be helpful if the enclosing documents were large and you just wanted to view the shapes
key values.
Caution: This answer provides a solution that was relevant at that time, before the new features of MongoDB 2.2 and up were introduced. See the other answers if you are using a more recent version of MongoDB.
The field selector parameter is limited to complete properties. It cannot be used to select part of an array, only the entire array. I tried using the $ positional operator, but that didn't work.
The easiest way is to just filter the shapes in the client.
If you really need the correct output directly from MongoDB, you can use a map-reduce to filter the shapes.
function map() {
filteredShapes = [];
this.shapes.forEach(function (s) {
if (s.color === "red") {
filteredShapes.push(s);
}
});
emit(this._id, { shapes: filteredShapes });
}
function reduce(key, values) {
return values[0];
}
res = db.test.mapReduce(map, reduce, { query: { "shapes.color": "red" } })
db[res.result].find()
Another interesing way is to use $redact, which is one of the new aggregation features of MongoDB 2.6. If you are using 2.6, you don't need an $unwind which might cause you performance problems if you have large arrays.
db.test.aggregate([
{ $match: {
shapes: { $elemMatch: {color: "red"} }
}},
{ $redact : {
$cond: {
if: { $or : [{ $eq: ["$color","red"] }, { $not : "$color" }]},
then: "$$DESCEND",
else: "$$PRUNE"
}
}}]);
$redact
"restricts the contents of the documents based on information stored in the documents themselves". So it will run only inside of the document. It basically scans your document top to the bottom, and checks if it matches with your if
condition which is in $cond
, if there is match it will either keep the content($$DESCEND
) or remove($$PRUNE
).
In the example above, first $match
returns the whole shapes
array, and $redact strips it down to the expected result.
Note that {$not:"$color"}
is necessary, because it will scan the top document as well, and if $redact
does not find a color
field on the top level this will return false
that might strip the whole document which we don't want.
$match
as your first aggregate stage
Better you can query in matching array element using $slice
is it helpful to returning the significant object in an array.
db.test.find({"shapes.color" : "blue"}, {"shapes.$" : 1})
$slice
is helpful when you know the index of the element, but sometimes you want whichever array element matched your criteria. You can return the matching element with the $
operator.
shapes.color : blue
or just the first one?
db.getCollection('aj').find({"shapes.color":"red"},{"shapes.$":1})
OUTPUTS
{
"shapes" : [
{
"shape" : "circle",
"color" : "red"
}
]
}
The syntax for find in mongodb is
db.<collection name>.find(query, projection);
and the second query that you have written, that is
db.test.find(
{shapes: {"$elemMatch": {color: "red"}}},
{"shapes.color":1})
in this you have used the $elemMatch
operator in query part, whereas if you use this operator in the projection part then you will get the desired result. You can write down your query as
db.users.find(
{"shapes.color":"red"},
{_id:0, shapes: {$elemMatch : {color: "red"}}})
This will give you the desired result.
"shapes.color":"red"
in the query parameter (the first parameter of the find method) is not necessary. You can replace it with {}
and get the same results.
Patient.find( { user: req.user._id, _id: req.params.patientId, "tests.test": req.params.testId, }, { "tests.$": 1, name: 1, } ) .populate({ path: "tests", populate: { path: "test", model: "Test", }, }) .exec((err, patient) => { if (err || !patient) { return res.status(404).send({ error: { message: err } }); } return res.send({ patient }); });
But then populate is throwing an error
Thanks to JohnnyHK.
Here I just want to add some more complex usage.
// Document
{
"_id" : 1
"shapes" : [
{"shape" : "square", "color" : "red"},
{"shape" : "circle", "color" : "green"}
]
}
{
"_id" : 2
"shapes" : [
{"shape" : "square", "color" : "red"},
{"shape" : "circle", "color" : "green"}
]
}
// The Query
db.contents.find({
"_id" : ObjectId(1),
"shapes.color":"red"
},{
"_id": 0,
"shapes" :{
"$elemMatch":{
"color" : "red"
}
}
})
//And the Result
{"shapes":[
{
"shape" : "square",
"color" : "red"
}
]}
You just need to run query
db.test.find(
{"shapes.color": "red"},
{shapes: {$elemMatch: {color: "red"}}});
output of this query is
{
"_id" : ObjectId("562e7c594c12942f08fe4192"),
"shapes" : [
{"shape" : "circle", "color" : "red"}
]
}
as you expected it'll gives the exact field from array that matches color:'red'.
Along with $project
it will be more appropriate other wise matching elements will be clubbed together with other elements in document.
db.test.aggregate(
{ "$unwind" : "$shapes" },
{ "$match" : { "shapes.color": "red" } },
{
"$project": {
"_id":1,
"item":1
}
}
)
Likewise you can find for the multiple
db.getCollection('localData').aggregate([
// Get just the docs that contain a shapes element where color is 'red'
{$match: {'shapes.color': {$in : ['red','yellow'] } }},
{$project: {
shapes: {$filter: {
input: '$shapes',
as: 'shape',
cond: {$in: ['$$shape.color', ['red', 'yellow']]}
}}
}}
])
$match
to cut down the space, then $filter
to keep what you want, overwriting the input field (use output of $filter
on field shapes
to $project
back on to shapes
. Style note: best not to use the field name as the as
argument because that can lead to confusion later with $$shape
and $shape
. I prefer zz
as the as
field because it really stands out.
db.test.find( {"shapes.color": "red"}, {_id: 0})
Use aggregation function and $project
to get specific object field in document
db.getCollection('geolocations').aggregate([ { $project : { geolocation : 1} } ])
result:
{
"_id" : ObjectId("5e3ee15968879c0d5942464b"),
"geolocation" : [
{
"_id" : ObjectId("5e3ee3ee68879c0d5942465e"),
"latitude" : 12.9718313,
"longitude" : 77.593551,
"country" : "India",
"city" : "Chennai",
"zipcode" : "560001",
"streetName" : "Sidney Road",
"countryCode" : "in",
"ip" : "116.75.115.248",
"date" : ISODate("2020-02-08T16:38:06.584Z")
}
]
}
Although the question was asked 9.6 years ago, this has been of immense help to numerous people, me being one of them. Thank you everyone for all your queries, hints and answers. Picking up from one of the answers here.. I found that the following method can also be used to project other fields in the parent document.This may be helpful to someone.
For the following document, the need was to find out if an employee (emp #7839) has his leave history set for the year 2020. Leave history is implemented as an embedded document within the parent Employee document.
db.employees.find( {"leave_history.calendar_year": 2020},
{leave_history: {$elemMatch: {calendar_year: 2020}},empno:true,ename:true}).pretty()
{
"_id" : ObjectId("5e907ad23997181dde06e8fc"),
"empno" : 7839,
"ename" : "KING",
"mgrno" : 0,
"hiredate" : "1990-05-09",
"sal" : 100000,
"deptno" : {
"_id" : ObjectId("5e9065f53997181dde06e8f8")
},
"username" : "none",
"password" : "none",
"is_admin" : "N",
"is_approver" : "Y",
"is_manager" : "Y",
"user_role" : "AP",
"admin_approval_received" : "Y",
"active" : "Y",
"created_date" : "2020-04-10",
"updated_date" : "2020-04-10",
"application_usage_log" : [
{
"logged_in_as" : "AP",
"log_in_date" : "2020-04-10"
},
{
"logged_in_as" : "EM",
"log_in_date" : ISODate("2020-04-16T07:28:11.959Z")
}
],
"leave_history" : [
{
"calendar_year" : 2020,
"pl_used" : 0,
"cl_used" : 0,
"sl_used" : 0
},
{
"calendar_year" : 2021,
"pl_used" : 0,
"cl_used" : 0,
"sl_used" : 0
}
]
}
if you want to do filter, set and find at the same time.
let post = await Post.findOneAndUpdate(
{
_id: req.params.id,
tasks: {
$elemMatch: {
id: req.params.jobId,
date,
},
},
},
{
$set: {
'jobs.$[i].performer': performer,
'jobs.$[i].status': status,
'jobs.$[i].type': type,
},
},
{
arrayFilters: [
{
'i.id': req.params.jobId,
},
],
new: true,
}
);
Success story sharing
aggregate
.db.test.find({}, {shapes: {$elemMatch: {color: "red"}}});