如何在 Python 中制作两个可以执行以下操作的装饰器?
@make_bold
@make_italic
def say():
return "Hello"
...应该返回:
"<b><i>Hello</i></b>"
如果您不喜欢冗长的解释,请参阅Paolo Bergantino’s answer。
装饰器基础
Python 的函数是对象
要了解装饰器,首先必须了解函数是 Python 中的对象。这具有重要的后果。让我们用一个简单的例子来看看为什么:
def shout(word="yes"):
return word.capitalize()+"!"
print(shout())
# outputs : 'Yes!'
# As an object, you can assign the function to a variable like any other object
scream = shout
# Notice we don't use parentheses: we are not calling the function,
# we are putting the function "shout" into the variable "scream".
# It means you can then call "shout" from "scream":
print(scream())
# outputs : 'Yes!'
# More than that, it means you can remove the old name 'shout',
# and the function will still be accessible from 'scream'
del shout
try:
print(shout())
except NameError as e:
print(e)
#outputs: "name 'shout' is not defined"
print(scream())
# outputs: 'Yes!'
请记住这一点。我们很快就会回到它。
Python 函数的另一个有趣特性是它们可以在另一个函数中定义!
def talk():
# You can define a function on the fly in "talk" ...
def whisper(word="yes"):
return word.lower()+"..."
# ... and use it right away!
print(whisper())
# You call "talk", that defines "whisper" EVERY TIME you call it, then
# "whisper" is called in "talk".
talk()
# outputs:
# "yes..."
# But "whisper" DOES NOT EXIST outside "talk":
try:
print(whisper())
except NameError as e:
print(e)
#outputs : "name 'whisper' is not defined"*
#Python's functions are objects
函数参考
好的,还在吗?现在有趣的部分...
您已经看到函数是对象。因此,功能:
可以分配给变量
可以在另一个函数中定义
这意味着一个函数可以return
另一个函数。
def getTalk(kind="shout"):
# We define functions on the fly
def shout(word="yes"):
return word.capitalize()+"!"
def whisper(word="yes") :
return word.lower()+"..."
# Then we return one of them
if kind == "shout":
# We don't use "()", we are not calling the function,
# we are returning the function object
return shout
else:
return whisper
# How do you use this strange beast?
# Get the function and assign it to a variable
talk = getTalk()
# You can see that "talk" is here a function object:
print(talk)
#outputs : <function shout at 0xb7ea817c>
# The object is the one returned by the function:
print(talk())
#outputs : Yes!
# And you can even use it directly if you feel wild:
print(getTalk("whisper")())
#outputs : yes...
还有更多!
如果您可以 return
一个函数,则可以将一个函数作为参数传递:
def doSomethingBefore(func):
print("I do something before then I call the function you gave me")
print(func())
doSomethingBefore(scream)
#outputs:
#I do something before then I call the function you gave me
#Yes!
好吧,你已经具备了理解装饰器所需的一切。您会看到,装饰器是“包装器”,这意味着它们允许您在它们装饰的函数之前和之后执行代码,而无需修改函数本身。
手工装饰器
你将如何手动进行:
# A decorator is a function that expects ANOTHER function as parameter
def my_shiny_new_decorator(a_function_to_decorate):
# Inside, the decorator defines a function on the fly: the wrapper.
# This function is going to be wrapped around the original function
# so it can execute code before and after it.
def the_wrapper_around_the_original_function():
# Put here the code you want to be executed BEFORE the original function is called
print("Before the function runs")
# Call the function here (using parentheses)
a_function_to_decorate()
# Put here the code you want to be executed AFTER the original function is called
print("After the function runs")
# At this point, "a_function_to_decorate" HAS NEVER BEEN EXECUTED.
# We return the wrapper function we have just created.
# The wrapper contains the function and the code to execute before and after. It’s ready to use!
return the_wrapper_around_the_original_function
# Now imagine you create a function you don't want to ever touch again.
def a_stand_alone_function():
print("I am a stand alone function, don't you dare modify me")
a_stand_alone_function()
#outputs: I am a stand alone function, don't you dare modify me
# Well, you can decorate it to extend its behavior.
# Just pass it to the decorator, it will wrap it dynamically in
# any code you want and return you a new function ready to be used:
a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs
现在,您可能希望每次调用 a_stand_alone_function
时都调用 a_stand_alone_function_decorated
。这很简单,只需用 my_shiny_new_decorator
返回的函数覆盖 a_stand_alone_function
:
a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#outputs:
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs
# That’s EXACTLY what decorators do!
装饰师揭秘
前面的例子,使用装饰器语法:
@my_shiny_new_decorator
def another_stand_alone_function():
print("Leave me alone")
another_stand_alone_function()
#outputs:
#Before the function runs
#Leave me alone
#After the function runs
是的,就是这样,就是这么简单。 @decorator
只是一个快捷方式:
another_stand_alone_function = my_shiny_new_decorator(another_stand_alone_function)
装饰器只是 decorator design pattern 的 Python 变体。 Python 中嵌入了几种经典设计模式以简化开发(如迭代器)。
当然,你可以积累装饰器:
def bread(func):
def wrapper():
print("</''''''\>")
func()
print("<\______/>")
return wrapper
def ingredients(func):
def wrapper():
print("#tomatoes#")
func()
print("~salad~")
return wrapper
def sandwich(food="--ham--"):
print(food)
sandwich()
#outputs: --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>
使用 Python 装饰器语法:
@bread
@ingredients
def sandwich(food="--ham--"):
print(food)
sandwich()
#outputs:
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>
您设置装饰器的顺序很重要:
@ingredients
@bread
def strange_sandwich(food="--ham--"):
print(food)
strange_sandwich()
#outputs:
##tomatoes#
#</''''''\>
# --ham--
#<\______/>
# ~salad~
现在:回答这个问题...
作为结论,您可以很容易地看到如何回答这个问题:
# The decorator to make it bold
def makebold(fn):
# The new function the decorator returns
def wrapper():
# Insertion of some code before and after
return "<b>" + fn() + "</b>"
return wrapper
# The decorator to make it italic
def makeitalic(fn):
# The new function the decorator returns
def wrapper():
# Insertion of some code before and after
return "<i>" + fn() + "</i>"
return wrapper
@makebold
@makeitalic
def say():
return "hello"
print(say())
#outputs: <b><i>hello</i></b>
# This is the exact equivalent to
def say():
return "hello"
say = makebold(makeitalic(say))
print(say())
#outputs: <b><i>hello</i></b>
你现在可以开心地离开,或者多费点脑筋,看看装饰器的高级用途。
将装饰器提升到一个新的水平
将参数传递给装饰函数
# It’s not black magic, you just have to let the wrapper
# pass the argument:
def a_decorator_passing_arguments(function_to_decorate):
def a_wrapper_accepting_arguments(arg1, arg2):
print("I got args! Look: {0}, {1}".format(arg1, arg2))
function_to_decorate(arg1, arg2)
return a_wrapper_accepting_arguments
# Since when you are calling the function returned by the decorator, you are
# calling the wrapper, passing arguments to the wrapper will let it pass them to
# the decorated function
@a_decorator_passing_arguments
def print_full_name(first_name, last_name):
print("My name is {0} {1}".format(first_name, last_name))
print_full_name("Peter", "Venkman")
# outputs:
#I got args! Look: Peter Venkman
#My name is Peter Venkman
装饰方法
Python 的一大优点是方法和函数实际上是相同的。唯一的区别是方法期望它们的第一个参数是对当前对象 (self
) 的引用。
这意味着您可以以相同的方式为方法构建装饰器!请记住将 self
考虑在内:
def method_friendly_decorator(method_to_decorate):
def wrapper(self, lie):
lie = lie - 3 # very friendly, decrease age even more :-)
return method_to_decorate(self, lie)
return wrapper
class Lucy(object):
def __init__(self):
self.age = 32
@method_friendly_decorator
def sayYourAge(self, lie):
print("I am {0}, what did you think?".format(self.age + lie))
l = Lucy()
l.sayYourAge(-3)
#outputs: I am 26, what did you think?
如果您正在制作通用装饰器——您将应用于任何函数或方法,无论其参数如何——那么只需使用 *args, **kwargs
:
def a_decorator_passing_arbitrary_arguments(function_to_decorate):
# The wrapper accepts any arguments
def a_wrapper_accepting_arbitrary_arguments(*args, **kwargs):
print("Do I have args?:")
print(args)
print(kwargs)
# Then you unpack the arguments, here *args, **kwargs
# If you are not familiar with unpacking, check:
# http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
function_to_decorate(*args, **kwargs)
return a_wrapper_accepting_arbitrary_arguments
@a_decorator_passing_arbitrary_arguments
def function_with_no_argument():
print("Python is cool, no argument here.")
function_with_no_argument()
#outputs
#Do I have args?:
#()
#{}
#Python is cool, no argument here.
@a_decorator_passing_arbitrary_arguments
def function_with_arguments(a, b, c):
print(a, b, c)
function_with_arguments(1,2,3)
#outputs
#Do I have args?:
#(1, 2, 3)
#{}
#1 2 3
@a_decorator_passing_arbitrary_arguments
def function_with_named_arguments(a, b, c, platypus="Why not ?"):
print("Do {0}, {1} and {2} like platypus? {3}".format(a, b, c, platypus))
function_with_named_arguments("Bill", "Linus", "Steve", platypus="Indeed!")
#outputs
#Do I have args ? :
#('Bill', 'Linus', 'Steve')
#{'platypus': 'Indeed!'}
#Do Bill, Linus and Steve like platypus? Indeed!
class Mary(object):
def __init__(self):
self.age = 31
@a_decorator_passing_arbitrary_arguments
def sayYourAge(self, lie=-3): # You can now add a default value
print("I am {0}, what did you think?".format(self.age + lie))
m = Mary()
m.sayYourAge()
#outputs
# Do I have args?:
#(<__main__.Mary object at 0xb7d303ac>,)
#{}
#I am 28, what did you think?
将参数传递给装饰器
太好了,现在您对将参数传递给装饰器本身有何看法?
这可能会有些扭曲,因为装饰器必须接受一个函数作为参数。因此,您不能将装饰函数的参数直接传递给装饰器。
在急于解决之前,让我们写一点提醒:
# Decorators are ORDINARY functions
def my_decorator(func):
print("I am an ordinary function")
def wrapper():
print("I am function returned by the decorator")
func()
return wrapper
# Therefore, you can call it without any "@"
def lazy_function():
print("zzzzzzzz")
decorated_function = my_decorator(lazy_function)
#outputs: I am an ordinary function
# It outputs "I am an ordinary function", because that’s just what you do:
# calling a function. Nothing magic.
@my_decorator
def lazy_function():
print("zzzzzzzz")
#outputs: I am an ordinary function
完全一样。调用“my_decorator
”。因此,当您 @my_decorator
时,您是在告诉 Python 调用“由变量“my_decorator
”标记的函数。
这个很重要!你给的标签可以直接指向装饰器——也可以不指向。
让我们变得邪恶。 ☺
def decorator_maker():
print("I make decorators! I am executed only once: "
"when you make me create a decorator.")
def my_decorator(func):
print("I am a decorator! I am executed only when you decorate a function.")
def wrapped():
print("I am the wrapper around the decorated function. "
"I am called when you call the decorated function. "
"As the wrapper, I return the RESULT of the decorated function.")
return func()
print("As the decorator, I return the wrapped function.")
return wrapped
print("As a decorator maker, I return a decorator")
return my_decorator
# Let’s create a decorator. It’s just a new function after all.
new_decorator = decorator_maker()
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
# Then we decorate the function
def decorated_function():
print("I am the decorated function.")
decorated_function = new_decorator(decorated_function)
#outputs:
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function
# Let’s call the function:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.
这里没有惊喜。
让我们做同样的事情,但跳过所有讨厌的中间变量:
def decorated_function():
print("I am the decorated function.")
decorated_function = decorator_maker()(decorated_function)
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.
# Finally:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.
让我们让它更短:
@decorator_maker()
def decorated_function():
print("I am the decorated function.")
#outputs:
#I make decorators! I am executed only once: when you make me create a decorator.
#As a decorator maker, I return a decorator
#I am a decorator! I am executed only when you decorate a function.
#As the decorator, I return the wrapped function.
#Eventually:
decorated_function()
#outputs:
#I am the wrapper around the decorated function. I am called when you call the decorated function.
#As the wrapper, I return the RESULT of the decorated function.
#I am the decorated function.
嘿,你看到了吗?我们使用了带有“@
”语法的函数调用! :-)
所以,回到带参数的装饰器。如果我们可以使用函数动态生成装饰器,我们可以将参数传递给该函数,对吗?
def decorator_maker_with_arguments(decorator_arg1, decorator_arg2):
print("I make decorators! And I accept arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
def my_decorator(func):
# The ability to pass arguments here is a gift from closures.
# If you are not comfortable with closures, you can assume it’s ok,
# or read: https://stackoverflow.com/questions/13857/can-you-explain-closures-as-they-relate-to-python
print("I am the decorator. Somehow you passed me arguments: {0}, {1}".format(decorator_arg1, decorator_arg2))
# Don't confuse decorator arguments and function arguments!
def wrapped(function_arg1, function_arg2) :
print("I am the wrapper around the decorated function.\n"
"I can access all the variables\n"
"\t- from the decorator: {0} {1}\n"
"\t- from the function call: {2} {3}\n"
"Then I can pass them to the decorated function"
.format(decorator_arg1, decorator_arg2,
function_arg1, function_arg2))
return func(function_arg1, function_arg2)
return wrapped
return my_decorator
@decorator_maker_with_arguments("Leonard", "Sheldon")
def decorated_function_with_arguments(function_arg1, function_arg2):
print("I am the decorated function and only knows about my arguments: {0}"
" {1}".format(function_arg1, function_arg2))
decorated_function_with_arguments("Rajesh", "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Sheldon
#I am the decorator. Somehow you passed me arguments: Leonard Sheldon
#I am the wrapper around the decorated function.
#I can access all the variables
# - from the decorator: Leonard Sheldon
# - from the function call: Rajesh Howard
#Then I can pass them to the decorated function
#I am the decorated function and only knows about my arguments: Rajesh Howard
这是:带有参数的装饰器。参数可以设置为变量:
c1 = "Penny"
c2 = "Leslie"
@decorator_maker_with_arguments("Leonard", c1)
def decorated_function_with_arguments(function_arg1, function_arg2):
print("I am the decorated function and only knows about my arguments:"
" {0} {1}".format(function_arg1, function_arg2))
decorated_function_with_arguments(c2, "Howard")
#outputs:
#I make decorators! And I accept arguments: Leonard Penny
#I am the decorator. Somehow you passed me arguments: Leonard Penny
#I am the wrapper around the decorated function.
#I can access all the variables
# - from the decorator: Leonard Penny
# - from the function call: Leslie Howard
#Then I can pass them to the decorated function
#I am the decorated function and only know about my arguments: Leslie Howard
如您所见,您可以像使用此技巧的任何函数一样将参数传递给装饰器。如果您愿意,您甚至可以使用 *args, **kwargs
。但请记住,装饰器只被调用一次。就在 Python 导入脚本时。之后您不能动态设置参数。当你执行“import x”时,函数已经被修饰了,所以你不能改变任何东西。
让我们练习一下:装饰一个装饰器
好的,作为奖励,我会给你一个片段,让任何装饰器都能接受任何参数。毕竟,为了接受参数,我们使用另一个函数创建了我们的装饰器。
我们包裹了装饰器。
我们最近看到的其他包装函数是什么?
哦,是的,装饰师!
让我们玩得开心,为装饰器写一个装饰器:
def decorator_with_args(decorator_to_enhance):
"""
This function is supposed to be used as a decorator.
It must decorate an other function, that is intended to be used as a decorator.
Take a cup of coffee.
It will allow any decorator to accept an arbitrary number of arguments,
saving you the headache to remember how to do that every time.
"""
# We use the same trick we did to pass arguments
def decorator_maker(*args, **kwargs):
# We create on the fly a decorator that accepts only a function
# but keeps the passed arguments from the maker.
def decorator_wrapper(func):
# We return the result of the original decorator, which, after all,
# IS JUST AN ORDINARY FUNCTION (which returns a function).
# Only pitfall: the decorator must have this specific signature or it won't work:
return decorator_to_enhance(func, *args, **kwargs)
return decorator_wrapper
return decorator_maker
它可以按如下方式使用:
# You create the function you will use as a decorator. And stick a decorator on it :-)
# Don't forget, the signature is "decorator(func, *args, **kwargs)"
@decorator_with_args
def decorated_decorator(func, *args, **kwargs):
def wrapper(function_arg1, function_arg2):
print("Decorated with {0} {1}".format(args, kwargs))
return func(function_arg1, function_arg2)
return wrapper
# Then you decorate the functions you wish with your brand new decorated decorator.
@decorated_decorator(42, 404, 1024)
def decorated_function(function_arg1, function_arg2):
print("Hello {0} {1}".format(function_arg1, function_arg2))
decorated_function("Universe and", "everything")
#outputs:
#Decorated with (42, 404, 1024) {}
#Hello Universe and everything
# Whoooot!
我知道,上一次你有这种感觉,是在听一个人说:“在理解递归之前,你必须先理解递归”之后。但是现在,你不觉得掌握这个很好吗?
最佳实践:装饰器
装饰器是在 Python 2.4 中引入的,因此请确保您的代码将在 >= 2.4 上运行。
装饰器减慢了函数调用。记在脑子里。
您不能取消装饰功能。 (有一些技巧可以创建可以删除的装饰器,但没有人使用它们。)因此,一旦一个函数被装饰,它就会被所有代码装饰。
装饰器包装函数,这会使它们难以调试。 (这从 Python >= 2.5 变得更好;见下文。)
functools
模块是在 Python 2.5 中引入的。它包括函数 functools.wraps()
,它将修饰函数的名称、模块和文档字符串复制到其包装器中。
(有趣的事实:functools.wraps()
是一个装饰器!☺)
# For debugging, the stacktrace prints you the function __name__
def foo():
print("foo")
print(foo.__name__)
#outputs: foo
# With a decorator, it gets messy
def bar(func):
def wrapper():
print("bar")
return func()
return wrapper
@bar
def foo():
print("foo")
print(foo.__name__)
#outputs: wrapper
# "functools" can help for that
import functools
def bar(func):
# We say that "wrapper", is wrapping "func"
# and the magic begins
@functools.wraps(func)
def wrapper():
print("bar")
return func()
return wrapper
@bar
def foo():
print("foo")
print(foo.__name__)
#outputs: foo
装饰器如何有用?
现在有个大问题:我可以用装饰器做什么?
看起来很酷很强大,但是一个实际的例子会很棒。好吧,有1000种可能性。经典用途是从外部库扩展函数行为(您不能修改它),或用于调试(您不想修改它,因为它是临时的)。
您可以使用它们以 DRY 的方式扩展多个功能,如下所示:
def benchmark(func):
"""
A decorator that prints the time a function takes
to execute.
"""
import time
def wrapper(*args, **kwargs):
t = time.clock()
res = func(*args, **kwargs)
print("{0} {1}".format(func.__name__, time.clock()-t))
return res
return wrapper
def logging(func):
"""
A decorator that logs the activity of the script.
(it actually just prints it, but it could be logging!)
"""
def wrapper(*args, **kwargs):
res = func(*args, **kwargs)
print("{0} {1} {2}".format(func.__name__, args, kwargs))
return res
return wrapper
def counter(func):
"""
A decorator that counts and prints the number of times a function has been executed
"""
def wrapper(*args, **kwargs):
wrapper.count = wrapper.count + 1
res = func(*args, **kwargs)
print("{0} has been used: {1}x".format(func.__name__, wrapper.count))
return res
wrapper.count = 0
return wrapper
@counter
@benchmark
@logging
def reverse_string(string):
return str(reversed(string))
print(reverse_string("Able was I ere I saw Elba"))
print(reverse_string("A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!"))
#outputs:
#reverse_string ('Able was I ere I saw Elba',) {}
#wrapper 0.0
#wrapper has been used: 1x
#ablE was I ere I saw elbA
#reverse_string ('A man, a plan, a canoe, pasta, heros, rajahs, a coloratura, maps, snipe, percale, macaroni, a gag, a banana bag, a tan, a tag, a banana bag again (or a camel), a crepe, pins, Spam, a rut, a Rolo, cash, a jar, sore hats, a peon, a canal: Panama!',) {}
#wrapper 0.0
#wrapper has been used: 2x
#!amanaP :lanac a ,noep a ,stah eros ,raj a ,hsac ,oloR a ,tur a ,mapS ,snip ,eperc a ,)lemac a ro( niaga gab ananab a ,gat a ,nat a ,gab ananab a ,gag a ,inoracam ,elacrep ,epins ,spam ,arutaroloc a ,shajar ,soreh ,atsap ,eonac a ,nalp a ,nam A
当然,装饰器的好处是您可以立即在几乎任何东西上使用它们而无需重写。干,我说:
@counter
@benchmark
@logging
def get_random_futurama_quote():
from urllib import urlopen
result = urlopen("http://subfusion.net/cgi-bin/quote.pl?quote=futurama").read()
try:
value = result.split("<br><b><hr><br>")[1].split("<br><br><hr>")[0]
return value.strip()
except:
return "No, I'm ... doesn't!"
print(get_random_futurama_quote())
print(get_random_futurama_quote())
#outputs:
#get_random_futurama_quote () {}
#wrapper 0.02
#wrapper has been used: 1x
#The laws of science be a harsh mistress.
#get_random_futurama_quote () {}
#wrapper 0.01
#wrapper has been used: 2x
#Curse you, merciful Poseidon!
Python 本身提供了几个装饰器:property
、staticmethod
等。
Django 使用装饰器来管理缓存和查看权限。
扭曲为伪造的内联异步函数调用。
这真的是一个很大的游乐场。
查看 the documentation 了解装饰器的工作原理。这是您的要求:
from functools import wraps
def makebold(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return "<b>" + fn(*args, **kwargs) + "</b>"
return wrapper
def makeitalic(fn):
@wraps(fn)
def wrapper(*args, **kwargs):
return "<i>" + fn(*args, **kwargs) + "</i>"
return wrapper
@makebold
@makeitalic
def hello():
return "hello world"
@makebold
@makeitalic
def log(s):
return s
print hello() # returns "<b><i>hello world</i></b>"
print hello.__name__ # with functools.wraps() this returns "hello"
print log('hello') # returns "<b><i>hello</i></b>"
*args
和 **kwargs
应添加到答案中。装饰函数可以有参数,如果不指定,它们将丢失。
*args
、**kwargs
中提取命名参数的简单方法。一次解决这 3 个问题的简单方法是使用 decopatch
,如 here 所述。您还可以使用 Marius Gedminas 已经提到的 decorator
来解决第 2 点和第 3 点。
或者,您可以编写一个工厂函数,该函数返回一个装饰器,该装饰器将装饰函数的返回值包装在传递给工厂函数的标记中。例如:
from functools import wraps
def wrap_in_tag(tag):
def factory(func):
@wraps(func)
def decorator():
return '<%(tag)s>%(rv)s</%(tag)s>' % (
{'tag': tag, 'rv': func()})
return decorator
return factory
这使您可以编写:
@wrap_in_tag('b')
@wrap_in_tag('i')
def say():
return 'hello'
或者
makebold = wrap_in_tag('b')
makeitalic = wrap_in_tag('i')
@makebold
@makeitalic
def say():
return 'hello'
就我个人而言,我会以不同的方式编写装饰器:
from functools import wraps
def wrap_in_tag(tag):
def factory(func):
@wraps(func)
def decorator(val):
return func('<%(tag)s>%(val)s</%(tag)s>' %
{'tag': tag, 'val': val})
return decorator
return factory
这将产生:
@wrap_in_tag('b')
@wrap_in_tag('i')
def say(val):
return val
say('hello')
不要忘记装饰器语法是简写的构造:
say = wrap_in_tag('b')(wrap_in_tag('i')(say)))
def wrap_in_tag(*kwargs)
然后 @wrap_in_tag('b','i')
看起来其他人已经告诉你如何解决这个问题。我希望这将帮助您了解装饰器是什么。
装饰器只是语法糖。
这个
@decorator
def func():
...
扩展到
def func():
...
func = decorator(func)
@decorator()
(而不是 @decorator
)时,它是 func = decorator()(func)
的语法糖。当您需要“动态”生成装饰器时,这也是常见的做法
func = decorator(func)
中,变量名必须是 func
,这也是原始函数名吗? var = decorator(func)
也可以工作吗?
当然,您也可以从装饰器函数返回 lambda:
def makebold(f):
return lambda: "<b>" + f() + "</b>"
def makeitalic(f):
return lambda: "<i>" + f() + "</i>"
@makebold
@makeitalic
def say():
return "Hello"
print say()
makebold = lambda f : lambda "<b>" + f() + "</b>"
makebold = lambda f: lambda: "<b>" + f() + "</b>"
makebold = lambda f: lambda *a, **k: "<b>" + f(*a, **k) + "</b>"
functools.wraps
才能不丢弃 say
的文档字符串/签名/名称
help(say)
并获得 "Help on function <lambda>` 而不是 "Help on function say ".
Python 装饰器为另一个函数添加额外的功能
斜体装饰器可能就像
def makeitalic(fn):
def newFunc():
return "<i>" + fn() + "</i>"
return newFunc
请注意,函数是在函数内部定义的。它基本上所做的就是用新定义的函数替换一个函数。例如,我有这堂课
class foo:
def bar(self):
print "hi"
def foobar(self):
print "hi again"
现在说,我希望这两个函数在完成之后和之前都打印“---”。我可以在每个打印语句之前和之后添加一个打印“---”。但是因为我不喜欢重复自己,所以我会做一个装饰器
def addDashes(fn): # notice it takes a function as an argument
def newFunction(self): # define a new function
print "---"
fn(self) # call the original function
print "---"
return newFunction
# Return the newly defined function - it will "replace" the original
所以现在我可以把我的班级改成
class foo:
@addDashes
def bar(self):
print "hi"
@addDashes
def foobar(self):
print "hi again"
有关装饰器的更多信息,请查看 http://www.ibm.com/developerworks/linux/library/l-cpdecor.html
self
参数,因为 addDashes()
中定义的 newFunction()
专门设计为 method 装饰器,而不是通用函数装饰器。 self
参数表示类实例并传递给类方法,无论它们是否使用它——请参阅@e-satis 答案中标题为装饰方法的部分。
functools.wraps
您可以制作两个独立的装饰器来执行您想要的操作,如下图所示。请注意 *args, **kwargs
在 wrapped()
函数的声明中的使用,它支持具有多个参数的修饰函数(这对于示例 say()
函数实际上不是必需的,但为了通用性而包含在内)。
出于类似的原因,functools.wraps
装饰器用于将包装函数的元属性更改为被装饰函数的元属性。这使得错误消息和嵌入式函数文档 (func.__doc__
) 成为修饰函数的那些,而不是 wrapped()
的。
from functools import wraps
def makebold(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return "<b>" + fn(*args, **kwargs) + "</b>"
return wrapped
def makeitalic(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return "<i>" + fn(*args, **kwargs) + "</i>"
return wrapped
@makebold
@makeitalic
def say():
return 'Hello'
print(say()) # -> <b><i>Hello</i></b>
改进
如您所见,这两个装饰器中有很多重复的代码。鉴于这种相似性,您最好改为创建一个实际上是 decorator factory 的通用函数——换句话说,一个创建其他装饰器的装饰器函数。这样会减少代码重复,并允许遵循 DRY 原则。
def html_deco(tag):
def decorator(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return '<%s>' % tag + fn(*args, **kwargs) + '</%s>' % tag
return wrapped
return decorator
@html_deco('b')
@html_deco('i')
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
为了使代码更具可读性,您可以为工厂生成的装饰器指定一个更具描述性的名称:
makebold = html_deco('b')
makeitalic = html_deco('i')
@makebold
@makeitalic
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
甚至像这样组合它们:
makebolditalic = lambda fn: makebold(makeitalic(fn))
@makebolditalic
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
效率
虽然上面的示例可以完成所有工作,但当同时应用多个装饰器时,生成的代码会以无关函数调用的形式产生相当多的开销。这可能无关紧要,具体取决于确切的用法(例如,可能是 I/O 绑定的)。
如果装饰函数的速度很重要,可以通过编写一个稍微不同的装饰器工厂函数来保持单个额外函数调用的开销,该函数实现一次添加所有标签,因此它可以生成避免额外函数调用的代码通过为每个标签使用单独的装饰器。
这需要装饰器本身中的更多代码,但这仅在应用于函数定义时运行,而不是稍后调用它们本身时。这也适用于使用前面说明的 lambda
函数创建更具可读性的名称。样本:
def multi_html_deco(*tags):
start_tags, end_tags = [], []
for tag in tags:
start_tags.append('<%s>' % tag)
end_tags.append('</%s>' % tag)
start_tags = ''.join(start_tags)
end_tags = ''.join(reversed(end_tags))
def decorator(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return start_tags + fn(*args, **kwargs) + end_tags
return wrapped
return decorator
makebolditalic = multi_html_deco('b', 'i')
@makebolditalic
def greet(whom=''):
return 'Hello' + (' ' + whom) if whom else ''
print(greet('world')) # -> <b><i>Hello world</i></b>
做同样事情的另一种方法:
class bol(object):
def __init__(self, f):
self.f = f
def __call__(self):
return "<b>{}</b>".format(self.f())
class ita(object):
def __init__(self, f):
self.f = f
def __call__(self):
return "<i>{}</i>".format(self.f())
@bol
@ita
def sayhi():
return 'hi'
或者,更灵活:
class sty(object):
def __init__(self, tag):
self.tag = tag
def __call__(self, f):
def newf():
return "<{tag}>{res}</{tag}>".format(res=f(), tag=self.tag)
return newf
@sty('b')
@sty('i')
def sayhi():
return 'hi'
functools.update_wrapper
才能保留 sayhi.__name__ == "sayhi"
如何在 Python 中制作两个可以执行以下操作的装饰器?
调用时需要以下函数:
@makebold @makeitalic def say():返回“你好”
返回:
你好
简单的解决方案
要最简单地做到这一点,请制作返回关闭函数(闭包)并调用它的 lambdas(匿名函数)的装饰器:
def makeitalic(fn):
return lambda: '<i>' + fn() + '</i>'
def makebold(fn):
return lambda: '<b>' + fn() + '</b>'
现在根据需要使用它们:
@makebold
@makeitalic
def say():
return 'Hello'
现在:
>>> say()
'<b><i>Hello</i></b>'
简单解决方案的问题
但我们似乎几乎失去了原来的功能。
>>> say
<function <lambda> at 0x4ACFA070>
为了找到它,我们需要深入研究每个 lambda 的闭包,其中一个隐藏在另一个中:
>>> say.__closure__[0].cell_contents
<function <lambda> at 0x4ACFA030>
>>> say.__closure__[0].cell_contents.__closure__[0].cell_contents
<function say at 0x4ACFA730>
因此,如果我们将文档放在这个函数上,或者希望能够装饰带有多个参数的函数,或者我们只是想知道我们在调试会话中查看的是什么函数,我们需要对我们的包装。
全功能解决方案 - 克服大部分问题
我们有来自标准库中 functools
模块的装饰器 wraps
!
from functools import wraps
def makeitalic(fn):
# must assign/update attributes from wrapped function to wrapper
# __module__, __name__, __doc__, and __dict__ by default
@wraps(fn) # explicitly give function whose attributes it is applying
def wrapped(*args, **kwargs):
return '<i>' + fn(*args, **kwargs) + '</i>'
return wrapped
def makebold(fn):
@wraps(fn)
def wrapped(*args, **kwargs):
return '<b>' + fn(*args, **kwargs) + '</b>'
return wrapped
不幸的是,仍然有一些样板,但这是我们可以做到的最简单的。
在 Python 3 中,您还可以默认分配 __qualname__
和 __annotations__
。
所以现在:
@makebold
@makeitalic
def say():
"""This function returns a bolded, italicized 'hello'"""
return 'Hello'
现在:
>>> say
<function say at 0x14BB8F70>
>>> help(say)
Help on function say in module __main__:
say(*args, **kwargs)
This function returns a bolded, italicized 'hello'
结论
所以我们看到 wraps
使包装函数几乎可以做所有事情,除了告诉我们函数将什么作为参数。
还有其他模块可能会尝试解决这个问题,但标准库中还没有解决方案。
装饰器接受函数定义并创建一个执行该函数并转换结果的新函数。
@deco
def do():
...
相当于:
do = deco(do)
例子:
def deco(func):
def inner(letter):
return func(letter).upper() #upper
return inner
这个
@deco
def do(number):
return chr(number) # number to letter
相当于这个
def do2(number):
return chr(number)
do2 = deco(do2)
65 <=> '一个'
print(do(65))
print(do2(65))
>>> B
>>> B
要理解装饰器,重要的是要注意,装饰器创建了一个新的函数 do,它是内部的,它执行函数并转换结果。
这个答案早就得到了回答,但我想我会分享我的 Decorator 类,这使得编写新的装饰器变得简单而紧凑。
from abc import ABCMeta, abstractclassmethod
class Decorator(metaclass=ABCMeta):
""" Acts as a base class for all decorators """
def __init__(self):
self.method = None
def __call__(self, method):
self.method = method
return self.call
@abstractclassmethod
def call(self, *args, **kwargs):
return self.method(*args, **kwargs)
一方面,我认为这使得装饰器的行为非常清晰,但它也很容易非常简洁地定义新的装饰器。对于上面列出的示例,您可以将其解决为:
class MakeBold(Decorator):
def call():
return "<b>" + self.method() + "</b>"
class MakeItalic(Decorator):
def call():
return "<i>" + self.method() + "</i>"
@MakeBold()
@MakeItalic()
def say():
return "Hello"
您还可以使用它来执行更复杂的任务,例如装饰器,它自动使函数递归地应用于迭代器中的所有参数:
class ApplyRecursive(Decorator):
def __init__(self, *types):
super().__init__()
if not len(types):
types = (dict, list, tuple, set)
self._types = types
def call(self, arg):
if dict in self._types and isinstance(arg, dict):
return {key: self.call(value) for key, value in arg.items()}
if set in self._types and isinstance(arg, set):
return set(self.call(value) for value in arg)
if tuple in self._types and isinstance(arg, tuple):
return tuple(self.call(value) for value in arg)
if list in self._types and isinstance(arg, list):
return list(self.call(value) for value in arg)
return self.method(arg)
@ApplyRecursive(tuple, set, dict)
def double(arg):
return 2*arg
print(double(1))
print(double({'a': 1, 'b': 2}))
print(double({1, 2, 3}))
print(double((1, 2, 3, 4)))
print(double([1, 2, 3, 4, 5]))
哪个打印:
2
{'a': 2, 'b': 4}
{2, 4, 6}
(2, 4, 6, 8)
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
请注意,此示例未在装饰器的实例化中包含 list
类型,因此在最终的 print 语句中,该方法将应用于列表本身,而不是列表的元素。
#decorator.py
def makeHtmlTag(tag, *args, **kwds):
def real_decorator(fn):
css_class = " class='{0}'".format(kwds["css_class"]) \
if "css_class" in kwds else ""
def wrapped(*args, **kwds):
return "<"+tag+css_class+">" + fn(*args, **kwds) + "</"+tag+">"
return wrapped
# return decorator dont call it
return real_decorator
@makeHtmlTag(tag="b", css_class="bold_css")
@makeHtmlTag(tag="i", css_class="italic_css")
def hello():
return "hello world"
print hello()
您也可以在 Class 中编写装饰器
#class.py
class makeHtmlTagClass(object):
def __init__(self, tag, css_class=""):
self._tag = tag
self._css_class = " class='{0}'".format(css_class) \
if css_class != "" else ""
def __call__(self, fn):
def wrapped(*args, **kwargs):
return "<" + self._tag + self._css_class+">" \
+ fn(*args, **kwargs) + "</" + self._tag + ">"
return wrapped
@makeHtmlTagClass(tag="b", css_class="bold_css")
@makeHtmlTagClass(tag="i", css_class="italic_css")
def hello(name):
return "Hello, {}".format(name)
print hello("Your name")
这是链接装饰器的简单示例。注意最后一行 - 它显示了幕后发生的事情。
############################################################
#
# decorators
#
############################################################
def bold(fn):
def decorate():
# surround with bold tags before calling original function
return "<b>" + fn() + "</b>"
return decorate
def uk(fn):
def decorate():
# swap month and day
fields = fn().split('/')
date = fields[1] + "/" + fields[0] + "/" + fields[2]
return date
return decorate
import datetime
def getDate():
now = datetime.datetime.now()
return "%d/%d/%d" % (now.day, now.month, now.year)
@bold
def getBoldDate():
return getDate()
@uk
def getUkDate():
return getDate()
@bold
@uk
def getBoldUkDate():
return getDate()
print getDate()
print getBoldDate()
print getUkDate()
print getBoldUkDate()
# what is happening under the covers
print bold(uk(getDate))()
输出如下所示:
17/6/2013
<b>17/6/2013</b>
6/17/2013
<b>6/17/2013</b>
<b>6/17/2013</b>
说到计数器示例 - 如上所述,计数器将在所有使用装饰器的函数之间共享:
def counter(func):
def wrapped(*args, **kws):
print 'Called #%i' % wrapped.count
wrapped.count += 1
return func(*args, **kws)
wrapped.count = 0
return wrapped
这样,您的装饰器可以重复用于不同的功能(或用于多次装饰同一个功能:func_counter1 = counter(func); func_counter2 = counter(func)
),并且计数器变量将保持对每个功能私有。
用不同数量的参数装饰函数:
def frame_tests(fn):
def wrapper(*args):
print "\nStart: %s" %(fn.__name__)
fn(*args)
print "End: %s\n" %(fn.__name__)
return wrapper
@frame_tests
def test_fn1():
print "This is only a test!"
@frame_tests
def test_fn2(s1):
print "This is only a test! %s" %(s1)
@frame_tests
def test_fn3(s1, s2):
print "This is only a test! %s %s" %(s1, s2)
if __name__ == "__main__":
test_fn1()
test_fn2('OK!')
test_fn3('OK!', 'Just a test!')
结果:
Start: test_fn1
This is only a test!
End: test_fn1
Start: test_fn2
This is only a test! OK!
End: test_fn2
Start: test_fn3
This is only a test! OK! Just a test!
End: test_fn3
def wrapper(*args, **kwargs):
和 fn(*args, **kwargs)
还提供对关键字参数的支持,这可以很容易地变得更加通用。
Paolo Bergantino's answer 具有仅使用 stdlib 的巨大优势,适用于这个没有 decorator 参数或 decorated function 参数的简单示例。
但是,如果您想处理更一般的情况,它有 3 个主要限制:
正如在几个答案中已经指出的那样,您不能轻易修改代码以添加可选的装饰器参数。例如,创建一个 makestyle(style='bold') 装饰器并非易事。
此外,使用 @functools.wraps 创建的包装器不保留签名,因此如果提供了错误的参数,它们将开始执行,并且可能会引发与通常的 TypeError 不同的错误。
最后,在使用 @functools.wraps 创建的包装器中,很难根据其名称访问参数。实际上,参数可以出现在 *args、**kwargs 中,或者根本不出现(如果它是可选的)。
我写 decopatch
来解决第一个问题,写 makefun.wraps
来解决另外两个问题。请注意,makefun
利用与著名的 decorator
库相同的技巧。
这就是你如何创建一个带参数的装饰器,返回真正的签名保留包装器:
from decopatch import function_decorator, DECORATED
from makefun import wraps
@function_decorator
def makestyle(st='b', fn=DECORATED):
open_tag = "<%s>" % st
close_tag = "</%s>" % st
@wraps(fn)
def wrapped(*args, **kwargs):
return open_tag + fn(*args, **kwargs) + close_tag
return wrapped
decopatch
根据您的偏好,为您提供了两种隐藏或显示各种 Python 概念的开发风格。最紧凑的样式如下:
from decopatch import function_decorator, WRAPPED, F_ARGS, F_KWARGS
@function_decorator
def makestyle(st='b', fn=WRAPPED, f_args=F_ARGS, f_kwargs=F_KWARGS):
open_tag = "<%s>" % st
close_tag = "</%s>" % st
return open_tag + fn(*f_args, **f_kwargs) + close_tag
在这两种情况下,您都可以检查装饰器是否按预期工作:
@makestyle
@makestyle('i')
def hello(who):
return "hello %s" % who
assert hello('world') == '<b><i>hello world</i></b>'
详情请参阅documentation。
当您需要在装饰器中添加自定义参数,将其传递给最终函数然后使用它时,我添加了一个案例。
非常装饰者:
def jwt_or_redirect(fn):
@wraps(fn)
def decorator(*args, **kwargs):
...
return fn(*args, **kwargs)
return decorator
def jwt_refresh(fn):
@wraps(fn)
def decorator(*args, **kwargs):
...
new_kwargs = {'refreshed_jwt': 'xxxxx-xxxxxx'}
new_kwargs.update(kwargs)
return fn(*args, **new_kwargs)
return decorator
和最终功能:
@app.route('/')
@jwt_or_redirect
@jwt_refresh
def home_page(*args, **kwargs):
return kwargs['refreched_jwt']
另一个用于绘制图像的嵌套装饰器示例:
import matplotlib.pylab as plt
def remove_axis(func):
def inner(img, alpha):
plt.axis('off')
func(img, alpha)
return inner
def plot_gray(func):
def inner(img, alpha):
plt.gray()
func(img, alpha)
return inner
@remove_axis
@plot_gray
def plot_image(img, alpha):
plt.imshow(img, alpha=alpha)
plt.show()
现在,让我们首先使用嵌套装饰器显示没有轴标签的彩色图像:
plot_image(plt.imread('lena_color.jpg'), 0.4)
https://i.stack.imgur.com/n6Pbn.png
接下来,让我们使用嵌套装饰器 remove_axis
和 plot_gray
显示没有轴标签的灰度图像(我们需要 cmap='gray'
,否则默认颜色图为 viridis
,因此灰度图像默认情况下不显示为黑色和白色阴影,除非明确指定)
plot_image(plt.imread('lena_bw.jpg'), 0.8)
https://i.stack.imgur.com/JAhvK.png
上面的函数调用减少到下面的嵌套调用
remove_axis(plot_gray(plot_image))(img, alpha)
__closure__
属性)到达函数返回的闭包内部以提取原始未装饰的函数。 this answer 中记录了一个示例用法,其中介绍了如何在有限的情况下在较低级别注入装饰器函数。@decorator
语法可能最常用于用包装闭包替换函数(如答案所述)。但它也可以用其他东西替换该功能。例如,内置的property
、classmethod
和staticmethod
装饰器将函数替换为描述符。装饰器还可以对函数做一些事情,例如将对其的引用保存在某种注册表中,然后将其返回,不加修改,不使用任何包装器。__wrapped__
,以允许检索原始包装函数。这比查看封闭变量更可靠。