I saw some code that seems to use an operator I don't recognize, in the form of two exclamation points, like so: !!
. Can someone please tell me what this operator does?
The context in which I saw this was,
this.vertical = vertical !== undefined ? !!vertical : this.vertical;
if(vertical !== undefined) this.vertical = Boolean(vertical);
- it is much cleaner and clearer what is going on, requires no unnecessary assignment, is entirely standard, and is just as fast (on current FF and Chrome) jsperf.com/boolean-conversion-speed .
!!5/0
produces Infinity
rather than true
, as produced by Boolean(5/0)
. !!5/0
is equivalent to (!!5)/0
-- a.k.a true/0
-- due to the !
operator having a higher precedence than the /
operator. If you wanted to Booleanize 5/0
using a double-bang, you'd need to use !!(5/0)
.
Converts Object
to boolean
. If it was falsey (e.g. 0
, null
, undefined
, etc.), it will be false
, otherwise, true
.
!object // inverted boolean
!!object // non inverted boolean so true boolean representation
So !!
is not an operator, it's just the !
operator twice.
It may be simpler to do:
Boolean(object) // boolean
Real World Example "Test IE version":
const isIE8 = !! navigator.userAgent.match(/MSIE 8.0/);
console.log(isIE8); // returns true or false
If you ⇒
console.log(navigator.userAgent.match(/MSIE 8.0/));
// returns either an Array or null
But if you ⇒
console.log(!!navigator.userAgent.match(/MSIE 8.0/));
// returns either true or false
It's a horribly obscure way to do a type conversion.
!
means NOT. So !true
is false
, and !false
is true
. !0
is true
, and !1
is false
.
So you're converting a value to a boolean, then inverting it, then inverting it again.
// Maximum Obscurity:
val.enabled = !!userId;
// Partial Obscurity:
val.enabled = (userId != 0) ? true : false;
// And finally, much easier to understand:
val.enabled = (userId != 0);
// Or just
val.enabled = Boolean(userId);
Note: the latter two expressions aren't exactly equivalent to the first expression when it comes to some edge case (when userId
is []
, for example), due to the way the !=
operator works and what values are considered truthy.
userId ? true : false
makes more clear that there is conversion going on and handles the case where userId's value might have been explicitly set to undefined
!!var
into Boolean(var)
.. and !!
is faster (less instructions to process) and shorter than the alternatives.
!!false
is false. false != 0
is true. So they're not equivalent. !!
serves the useful purpose of coercing anything to a boolean.
Boolean(x)
. I don't consider any of your alternatives easy to understand. Worse, there is at least one case where using equality operator x != 0
gives a different result than Boolean(x)
or !!x
: try []
for x. Also, if you do like using equality operator, to get its "truthiness" rules, why wouldn't you do the more obvious (userId == true)
instead of (userId != 0)
?
!!expr
(two !
operators followed by an expression) returns a Boolean value (true
or false
) depending on the truthiness of the expression. It makes more sense when used on non-boolean types. Consider these examples, especially the 3rd example and onward:
!!false === false
!!true === true
!!0 === false
!!parseInt("foo") === false // NaN is falsy
!!1 === true
!!-1 === true // -1 is truthy
!!(1/0) === true // Infinity is truthy
!!"" === false // empty string is falsy
!!"foo" === true // non-empty string is truthy
!!"false" === true // ...even if it contains a falsy value
!!window.foo === false // undefined value is falsy
!!undefined === false // undefined primitive is falsy
!!null === false // null is falsy
!!{} === true // an (empty) object is truthy
!![] === true // an (empty) array is truthy; PHP programmers beware!
!!new Boolean(false) // true
!!Boolean(false) // false
new Boolean(false)
is an object and an object is truthy even if it contains a falsy value!
!!undefined //false
to this great answer!
!!(new Boolean(false).valueOf()) // false
(because new Boolean returns an instance of a Boolean object, which is truthy, while Boolean(false) or Boolean valueOf() coerces the expression's value to a primative boolean).
Brew some tea:
!!
is not an operator. It is the double-use of !
-- which is the logical "not" operator.
In theory:
!
determines the "truth" of what a value is not:
The truth is that false is not true (that's why !false results in true)
The truth is that true is not false (that's why !true results in false)
!!
determines the "truth" of what a value is not not:
The truth is that true is not not true (that's why !!true results in true)
The truth is that false is not not false (that's why !!false results in false)
What we wish to determine in the comparison is the "truth" about the value of a reference, not the value of the reference itself. There is a use-case where we might want to know the truth about a value, even if we expect the value to be false
(or falsey), or if we expect the value not to be typeof boolean
.
In practice:
Consider a concise function which detects feature functionality (and in this case, platform compatibility) by way of dynamic typing (aka "duck typing"). We want to write a function that returns true
if a user's browser supports the HTML5 <audio>
element, but we don't want the function to throw an error if <audio>
is undefined; and we don't want to use try ... catch
to handle any possible errors (because they're gross); and also we don't want to use a check inside the function that won't consistently reveal the truth about the feature (for example, document.createElement('audio')
will still create an element called <audio>
even if HTML5 <audio>
is not supported).
Here are the three approaches:
// this won't tell us anything about HTML5 `<audio>` as a feature
var foo = function(tag, atr) { return document.createElement(tag)[atr]; }
// this won't return true if the feature is detected (although it works just fine)
var bar = function(tag, atr) { return !document.createElement(tag)[atr]; }
// this is the concise, feature-detecting solution we want
var baz = function(tag, atr) { return !!document.createElement(tag)[atr]; }
foo('audio', 'preload'); // returns "auto"
bar('audio', 'preload'); // returns false
baz('audio', 'preload'); // returns true
Each function accepts an argument for a <tag>
and an attribute
to look for, but they each return different values based on what the comparisons determine.
But wait, there's more!
Some of you probably noticed that in this specific example, one could simply check for a property using the slightly more performant means of checking if the object in question has a property. There are two ways to do this:
// the native `hasOwnProperty` method
var qux = function(tag, atr) { return document.createElement(tag).hasOwnProperty(atr); }
// the `in` operator
var quux = function(tag, atr) { return atr in document.createElement(tag); }
qux('audio', 'preload'); // returns true
quux('audio', 'preload'); // returns true
We digress...
However rare these situations may be, there may exist a few scenarios where the most concise, most performant, and thus most preferred means of getting true
from a non-boolean, possibly undefined value is indeed by using !!
. Hopefully this ridiculously clears it up.
if()
statement already casts the expression to boolean, explicitly casting the return value of a testing function to boolean is redundant - since "truthiness" === true as far as an if()
statement goes anyway. Or am I missing a scenario where you NEED a truthy expression to actually be boolean true
?
if()
statements do cast boolean against falsey values, but say you want to actually set a boolean flag on an object - it won't cast it like an if()
statement does. For example object.hasTheThing = !!castTheReturnValToBoolNoMatterWhat()
would set either true
or false
instead of the real return value. Another example is maybe all admins are id
of 0
and non-admins are id 1
or higher. To get true
if someone is not an admin you could do person.isNotAdmin = !!admin.id
. Few use cases, but it's concise when there is.
!!
converts the value to the right of it to its equivalent boolean value. (Think poor man's way of "type-casting"). Its intent is usually to convey to the reader that the code does not care what value is in the variable, but what it's "truth" value is.
!
still flips the value to the right. In the case of a boolean the right-most !
negates the value, while the left-most !
negates it once again. Net effect is that there is no change, but most engines will generate op codes for the double negation.
if(0){...
Javascript already knows this is false. Why is it better to say if(!!0){...
?
!!foo
applies the unary not operator twice and is used to cast to boolean type similar to the use of unary plus +foo
to cast to number and concatenating an empty string ''+foo
to cast to string.
Instead of these hacks, you can also use the constructor functions corresponding to the primitive types (without using new
) to explicitly cast values, ie
Boolean(foo) === !!foo
Number(foo) === +foo
String(foo) === ''+foo
new
- as explicitly mentioned in my answer
x="0"
just do: x=!!+x; //false
which is the same as Boolean(Number(x))
Number (or +x) converts the string "0" to 0, which DOES evaluate to false, and then Boolean (!!x) casts it to boolean directly. Easy peasy!
!!+x
vs x !== "0"
?
So many answers doing half the work. Yes, !!X
could be read as "the truthiness of X [represented as a boolean]". But !!
isn't, practically speaking, so important for figuring out whether a single variable is (or even if many variables are) truthy or falsy. !!myVar === true
is the same as just myVar
. Comparing !!X
to a "real" boolean isn't really useful.
The only thing you gain with !!
is the ability to check the truthiness of multiple variables against each other in a repeatable, standardized (and JSLint friendly) fashion.
Simply casting :(
That is...
0 === false is false.
!!0 === false is true.
The above's not so useful. if (!0)
gives you the same results as if (!!0 === false)
. I can't think of a good case for casting a variable to boolean and then comparing to a "true" boolean.
See "== and !=" from JSLint's directions (note: Crockford is moving his site around a bit; that link is liable to die at some point) for a little on why:
The == and != operators do type coercion before comparing. This is bad because it causes ' \t\r\n' == 0 to be true. This can mask type errors. JSLint cannot reliably determine if == is being used correctly, so it is best to not use == and != at all and to always use the more reliable === and !== operators instead. If you only care that a value is truthy or falsy, then use the short form. Instead of (foo != 0) just say (foo) and instead of (foo == 0) say (!foo)
Note that there are some unintuitive cases where a boolean will be cast to a number (true
is cast to 1
and false
to 0
) when comparing a boolean to a number. In this case, !!
might be mentally useful. Though, again, these are cases where you're comparing a non-boolean to a hard-typed boolean, which is, imo, a serious mistake. if (-1)
is still the way to go here.
╔═══════════════════════════════════════╦═══════════════════╦═══════════╗
║ Original ║ Equivalent ║ Result ║
╠═══════════════════════════════════════╬═══════════════════╬═══════════╣
║ if (-1 == true) console.log("spam") ║ if (-1 == 1) ║ undefined ║
║ if (-1 == false) console.log("spam") ║ if (-1 == 0) ║ undefined ║
║ Order doesn't matter... ║ ║ ║
║ if (true == -1) console.log("spam") ║ if (1 == -1) ║ undefined ║
╠═══════════════════════════════════════╬═══════════════════╬═══════════╣
║ if (!!-1 == true) console.log("spam") ║ if (true == true) ║ spam ║ better
╠═══════════════════════════════════════╬═══════════════════╬═══════════╣
║ if (-1) console.log("spam") ║ if (truthy) ║ spam ║ still best
╚═══════════════════════════════════════╩═══════════════════╩═══════════╝
And things get even crazier depending on your engine. WScript, for instance, wins the prize.
function test()
{
return (1 === 1);
}
WScript.echo(test());
Because of some historical Windows jive, that'll output -1 in a message box! Try it in a cmd.exe prompt and see! But WScript.echo(-1 == test())
still gives you 0, or WScript's false
. Look away. It's hideous.
Comparing truthiness :)
But what if I have two values I need to check for equal truthi/falsi-ness?
Pretend we have myVar1 = 0;
and myVar2 = undefined;
.
myVar1 === myVar2 is 0 === undefined and is obviously false.
!!myVar1 === !!myVar2 is !!0 === !!undefined and is true! Same truthiness! (In this case, both "have a truthiness of falsy".)
So the only place you'd really need to use "boolean-cast variables" would be if you had a situation where you're checking if both variables have the same truthiness, right? That is, use !!
if you need to see if two vars are both truthy or both falsy (or not), that is, of equal (or not) truthiness.
I can't think of a great, non-contrived use case for that offhand. Maybe you have "linked" fields in a form?
if (!!customerInput.spouseName !== !!customerInput.spouseAge ) {
errorObjects.spouse = "Please either enter a valid name AND age "
+ "for your spouse or leave all spouse fields blank.";
}
So now if you have a truthy for both or a falsy for both spouse name and age, you can continue. Otherwise you've only got one field with a value (or a very early arranged marriage) and need to create an extra error on your errorObjects
collection.
Though even in this case, the !!
really is superfluous. One !
was enough to cast to a boolean, and you're just checking equality.
EDIT 24 Oct 2017, 6 Feb 19:
3rd party libraries that expect explicit Boolean values
Here's an interesting case... !!
might be useful when 3rd party libs expect explicit Boolean values.
React
For instance, False in JSX (React) has a special meaning that's not triggered on simple falsiness. If you tried returning something like the following in your JSX, expecting an int in messageCount
...
{messageCount && <div>You have messages!</div>}
... you might be surprised to see React render a 0
when you have zero messages. You have to explicitly return false for JSX not to render. The above statement returns 0
, which JSX happily renders, as it should. It can't tell you didn't have Count: {messageCount}
.
One fix involves the bangbang, which coerces 0 into !!0, which is false: {!!messageCount &&
JSX' docs suggest you be more explicit, write self-commenting code, and use a comparison to force to a Boolean. {messageCount > 0 &&
I'm more comfortable handling falsiness myself with a ternary -- {messageCount ?
Typescript
Same deal in Typescript: If you have a function that returns a boolean (or you're assigning a value to a boolean variable), you [usually] can't return/assign a boolean-y value; it has to be a strongly typed boolean. This means, iff myObject
is strongly typed, return !myObject;
works for a function returning a boolean, but return myObject;
doesn't. You have to return !!myObject
(or cast to the proper boolean another way) to match Typescript's expectations.
The exception for Typescript? If myObject was an any, you're back in JavaScript's Wild West and can return it without !!, even if your return type is a boolean.
Keep in mind that these are JSX & Typescript conventions, not ones inherent to JavaScript.
But if you see strange 0
s in your rendered JSX, think loose falsy management.
if (!!window.Worker)
true
"externally" operate exactly the same in an if
. I keep trying, but I can't think of a reason to prefer casting truthiness to a boolean value outside of the sort of convoluted "compare truthinesses" case, above, except for readability if you reuse the value later, as in the q
library example. But even then, it's a information-lossy shortcut, and I'd argue you're better off evaluating truthiness each time.
It's just the logical NOT operator, twice - it's used to convert something to boolean, e.g.:
true === !!10
false === !!0
It converts the suffix to a Boolean value.
It's a double not
operation. The first !
converts the value to boolean and inverts its logical value. The second !
inverts the logical value back.
It seems that the !!
operator results in a double negation.
var foo = "Hello World!";
!foo // Result: false
!!foo // Result: true
It simulates the behavior of the Boolean()
casting function. The first NOT
returns a Boolean value no matter what operand it is given. The second NOT
negates that Boolean
value and so gives the true
Boolean value of a variable. The end result is the same as using the Boolean()
function on a value.
!!
it's using NOT
operation twice together, !
convert the value to a boolean
and reverse it, so using it twice, showing the boolean(false or true) of that value. here is a simple example to see how !!
works:
At first, the place you have:
var zero = 0;
Then you do !0
, it will be converted to boolean and be evaluated to true
, because 0 is falsy
, so you get the reversed value and converted to boolean, so it gets evaluated to true
.
!zero; //true
but we don't want the reversed boolean version of the value, so we can reverse it again to get our result! That's why we use another !
.
Basically, !!
make us sure, the value we get is boolean, not falsy, truthy or string etc...
So it's like using Boolean
function in javascript, but easy and shorter way to convert a value to boolean:
var zero = 0;
!!zero; //false
! is "boolean not", which essentially typecasts the value of "enable" to its boolean opposite. The second ! flips this value. So, !!enable
means "not not enable," giving you the value of enable
as a boolean.
I think worth mentioning is, that a condition combined with logical AND/OR will not return a boolean value but last success or first fail in case of && and first success or last fail in case of || of condition chain.
res = (1 && 2); // res is 2
res = (true && alert) // res is function alert()
res = ('foo' || alert) // res is 'foo'
In order to cast the condition to a true boolean literal we can use the double negation:
res = !!(1 && 2); // res is true
res = !!(true && alert) // res is true
res = !!('foo' || alert) // res is true
The !!
construct is a simple way of turning any JavaScript expression into its Boolean equivalent.
For example: !!"he shot me down" === true
and !!0 === false
.
0 === false
is false and !!0 === false
is true.
It's not a single operator, it's two. It's equivalent to the following and is a quick way to cast a value to boolean.
val.enabled = !(!enable);
This question has been answered quite thoroughly, but I'd like to add an answer that I hope is as simplified as possible, making the meaning of !! as simple to grasp as can be.
Because javascript has what are called "truthy" and "falsey" values, there are expressions that when evaluated in other expressions will result in a true or false condition, even though the value or expression being examined is not actually true
or false
.
For instance:
if (document.getElementById('myElement')) {
// code block
}
If that element does in fact exist, the expression will evaluate as true, and the code block will be executed.
However:
if (document.getElementById('myElement') == true) {
// code block
}
...will NOT result in a true condition, and the code block will not be executed, even if the element does exist.
Why? Because document.getElementById()
is a "truthy" expression that will evaluate as true in this if()
statement, but it is not an actual boolean value of true
.
The double "not" in this case is quite simple. It is simply two not
s back to back.
The first one simply "inverts" the truthy or falsey value, resulting in an actual boolean type, and then the second one "inverts" it back again to it's original state, but now in an actual boolean value. That way you have consistency:
if (!!document.getElementById('myElement')) {}
and
if (!!document.getElementById('myElement') == true) {}
will BOTH return true, as expected.
I suspect this is a leftover from C++ where people override the ! operator but not the bool operator.
So to get a negative(or positive) answer in that case you would first need to use the ! operator to get a boolean, but if you wanted to check the positive case would use !!.
The if
and while
statements and the ?
operator use truth values to determine which branch of code to run. For example, zero and NaN numbers and the empty string are false, but other numbers and strings are true. Objects are true, but the undefined value and null
are both false.
The double negation operator !!
calculates the truth value of a value. It's actually two operators, where !!x
means !(!x)
, and behaves as follows:
If x is a false value, !x is true, and !!x is false.
If x is a true value, !x is false, and !!x is true.
When used at the top level of a Boolean context (if
, while
, or ?
), the !!
operator is behaviorally a no-op. For example, if (x)
and if (!!x)
mean the same thing.
Practical uses
However it has several practical uses.
One use is to lossily compress an object to its truth value, so that your code isn't holding a reference to a big object and keeping it alive. Assigning !!some_big_object
to a variable instead of some_big_object
lets go of it for the garbage collector. This is useful for cases that produce either an object or a false value such as null
or the undefined value, such as browser feature detection.
Another use, which I mentioned in an answer about C's corresponding !!
operator, is with "lint" tools that look for common typos and print diagnostics. For example, in both C and JavaScript, a few common typos for Boolean operations produce other behaviors whose output isn't quite as Boolean:
if (a = b) is assignment followed by use of the truth value of b; if (a == b) is an equality comparison.
if (a & b) is a bitwise AND; if (a && b) is a logical AND. 2 & 5 is 0 (a false value); 2 && 5 is true.
The !!
operator reassures the lint tool that what you wrote is what you meant: do this operation, then take the truth value of the result.
A third use is to produce logical XOR and logical XNOR. In both C and JavaScript, a && b
performs a logical AND (true if both sides are true), and a & b
performs a bitwise AND. a || b
performs a logical OR (true if at least one are true), and a | b
performs a bitwise OR. There's a bitwise XOR (exclusive OR) as a ^ b
, but there's no built-in operator for logical XOR (true if exactly one side is true). You might, for example, want to allow the user to enter text in exactly one of two fields. What you can do is convert each to a truth value and compare them: !!x !== !!y
.
Double boolean negation. Often used to check if value is not undefined.
I just wanted to add that
if(variableThing){
// do something
}
is the same as
if(!!variableThing){
// do something
}
But this can be an issue when something is undefined.
// a === undefined, b is an empty object (eg. b.asdf === undefined)
var a, b = {};
// Both of these give error a.foo is not defined etc.
// you'd see the same behavior for !!a.foo and !!b.foo.bar
a.foo
b.foo.bar
// This works -- these return undefined
a && a.foo
b.foo && b.foo.bar
b && b.foo && b.foo.bar
The trick here is the chain of &&
s will return the first falsey value it finds -- and this can be fed to an if statement etc. So if b.foo is undefined, it will return undefined and skip the b.foo.bar
statement, and we get no error.
The above return undefined but if you have an empty string, false, null, 0, undefined those values will return and soon as we encounter them in the chain -- []
and {}
are both "truthy" and we will continue down the so-called "&& chain" to the next value to the right.
P.S. Another way of doing the above (b && b.foo
) is (b || {}).foo
. Those are equivalent, because if b is undefined then b || {}
will be {}
, and you'll be accessing a value in an empty object (no error) instead of trying to access a value within "undefined" (causes an error).
So, (b || {}).foo
is the same as b && b.foo
and ((b || {}).foo || {}).bar
is the same as b && b.foo && b.foo.bar
.
({}).anything
will give undefined
!!x
is shorthand for Boolean(x)
The first bang forces the js engine to run Boolean(x)
but also has the side effect of inverting the value. So the second bang undoes the side effect.
It forces all things to boolean.
For example:
console.log(undefined); // -> undefined
console.log(!undefined); // -> true
console.log(!!undefined); // -> false
console.log('abc'); // -> abc
console.log(!'abc'); // -> false
console.log(!!'abc'); // -> true
console.log(0 === false); // -> undefined
console.log(!0 === false); // -> false
console.log(!!0 === false); // -> true
Tons of great answers here, but if you've read down this far, this helped me to 'get it'. Open the console on Chrome (etc), and start typing:
!(!(1))
!(!(0))
!(!('truthy'))
!(!(null))
!(!(''))
!(!(undefined))
!(!(new Object())
!(!({}))
woo = 'hoo'
!(!(woo))
...etc, etc, until the light goes on ;)
Naturally, these are all the same as merely typing !!someThing, but the added parentheses might help make it more understandable.
After seeing all these great answers, I would like to add another reason for using !!
. Currenty I'm working in Angular 2-4 (TypeScript) and I want to return a boolean as false
when my user is not authenticated. If he isn't authenticated, the token-string would be null
or ""
. I can do this by using the next block of code:
public isAuthenticated(): boolean {
return !!this.getToken();
}
here is a piece of code from angular js
var requestAnimationFrame = $window.requestAnimationFrame ||
$window.webkitRequestAnimationFrame ||
$window.mozRequestAnimationFrame;
var rafSupported = !!requestAnimationFrame;
their intention is to set rafSupported to true or false based on the availability of function in requestAnimationFrame
it can be achieved by checking in following way in general:
if(typeof requestAnimationFrame === 'function')
rafSupported =true;
else
rafSupported =false;
the short way could be using !!
rafSupported = !!requestAnimationFrame ;
so if requestAnimationFrame was assigned a function then !requestAnimationFrame would be false and one more ! of it would be true
if requestAnimationFrame was assinged undefined then !requestAnimationFrame would be true and one more ! of it would be false
Returns boolean value of a variable.
Instead, Boolean
class can be used.
(please read code descriptions)
var X = "test"; // X value is "test" as a String value
var booleanX = !!X // booleanX is `true` as a Boolean value beacuse non-empty strings evaluates as `true` in boolean
var whatIsXValueInBoolean = Boolean(X) // whatIsXValueInBoolean is `true` again
console.log(Boolean(X) === !!X) // writes `true`
Namely, Boolean(X) = !!X
in use.
Please check code snippet out below ↓
let a = 0 console.log("a: ", a) // writes a value in its kind console.log("!a: ", !a) // writes '0 is NOT true in boolean' value as boolean - So that's true.In boolean 0 means false and 1 means true. console.log("!!a: ", !!a) // writes 0 value in boolean. 0 means false. console.log("Boolean(a): ", Boolean(a)) // equals to `!!a` console.log("\n") // newline a = 1 console.log("a: ", a) console.log("!a: ", !a) console.log("!!a: ", !!a) // writes 1 value in boolean console.log("\n") // newline a = "" console.log("a: ", a) console.log("!a: ", !a) // writes '"" is NOT true in boolean' value as boolean - So that's true.In boolean empty strings, null and undefined values mean false and if there is a string it means true. console.log("!!a: ", !!a) // writes "" value in boolean console.log("\n") // newline a = "test" console.log("a: ", a) // writes a value in its kind console.log("!a: ", !a) console.log("!!a: ", !!a) // writes "test" value in boolean console.log("Boolean(a) === !!a: ", Boolean(a) === !!a) // writes true
Use logical not operator two times
it means !true = false
and !!true = true
It is important to remember the evaluations to true
and false
in JavaScript:
Everything with a "Value" is true (namely truthy), for example: 101, 3.1415, -11, "Lucky Brain", new Object() and, of course, true
101,
3.1415,
-11,
"Lucky Brain",
new Object()
and, of course, true
Everything without a "Value" is false (namely falsy), for example: 0, -0, "" (empty string), undefined, null, NaN (not a number) and, of course, false
0,
-0,
"" (empty string),
undefined,
null,
NaN (not a number)
and, of course, false
Applying the "logical not" operator (!
) evaluates the operand, converting it to boolean
and then negating it. Applying it twice will negate the negation, effectively converting the value to boolean
. Not applying the operator will just be a regular assignment of the exact value. Examples:
var value = 23; // number
var valueAsNegatedBoolean = !value; // boolean falsy (because 23 is truthy)
var valueAsBoolean = !!value; // boolean truthy
var copyOfValue = value; // number 23
var value2 = 0;
var value2AsNegatedBoolean = !value2; // boolean truthy (because 0 is falsy)
var value2AsBoolean = !!value2; // boolean falsy
var copyOfValue2 = value2; // number 0
value2 = value; assigns the exact object value even if it is not boolean hence value2 won't necessarily end up being boolean.
value2 = !!value; assigns a guaranteed boolean as the result of the double negation of the operand value and it is equivalent to the following but much shorter and readable:
if (value) { value2 = true; } else { value2 = false; }
===
or !==
operators and also the hidden cast operation that is happening behind the scenes and I show it in the example I provide.
Success story sharing