ChatGPT解决这个技术问题 Extra ChatGPT

How do I measure elapsed time in Python?

I want to measure the time it took to execute a function. I couldn't get timeit to work:

import timeit
start = timeit.timeit()
print("hello")
end = timeit.timeit()
print(end - start)
timeit.timeit() prints the time that it takes to execute its argument, which is "pass" by default. you have to instead use start= time.time() end = time.time()

M
Mateen Ulhaq

Use time.time() to measure the elapsed wall-clock time between two points:

import time

start = time.time()
print("hello")
end = time.time()
print(end - start)

This gives the execution time in seconds.

Another option since Python 3.3 might be to use perf_counter or process_time, depending on your requirements. Before 3.3 it was recommended to use time.clock (thanks Amber). However, it is currently deprecated:

On Unix, return the current processor time as a floating point number expressed in seconds. The precision, and in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same name. On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating point number, based on the Win32 function QueryPerformanceCounter(). The resolution is typically better than one microsecond. Deprecated since version 3.3: The behaviour of this function depends on the platform: use perf_counter() or process_time() instead, depending on your requirements, to have a well defined behaviour.


and for microseconds, use datetime.time()
(For performance measurement, time.clock() is actually preferred, since it can't be interfered with if the system clock gets messed with, but .time() does mostly accomplish the same purpose.)
Is there a nice way of converting resulting execturion time in seconds to something like HH:MM::SS?
@Danijel: print(timedelta(seconds=execution_time)). Though it is a separate question.
time.clock() is deprecated at of Python 3.3 docs.python.org/3.3/library/time.html#time.clock
j
jfs

Use timeit.default_timer instead of timeit.timeit. The former provides the best clock available on your platform and version of Python automatically:

from timeit import default_timer as timer

start = timer()
# ...
end = timer()
print(end - start) # Time in seconds, e.g. 5.38091952400282

timeit.default_timer is assigned to time.time() or time.clock() depending on OS. On Python 3.3+ default_timer is time.perf_counter() on all platforms. See Python - time.clock() vs. time.time() - accuracy?

See also:

Optimizing code

How to optimize for speed


Excellent answer - using timeit will produce far more accurate results since it will automatically account for things like garbage collection and OS differences
This gives time in ms or seconds?
@KhushbooTiwari in fractional seconds.
I think this note from the official documentation needs to be added default_timer() measurations can be affected by other programs running on the same machine, so the best thing to do when accurate timing is necessary is to repeat the timing a few times and use the best time. The -r option is good for this; the default of 3 repetitions is probably enough in most cases. On Unix, you can use time.clock() to measure CPU time.
I dont like how the import took place. "from timeit import default_timer as timer". Got lost while reading the code. Could have been clearer without having the "as timer" part.
p
phoenix

Python 3 only:

Since time.clock() is deprecated as of Python 3.3, you will want to use time.perf_counter() for system-wide timing, or time.process_time() for process-wide timing, just the way you used to use time.clock():

import time

t = time.process_time()
#do some stuff
elapsed_time = time.process_time() - t

The new function process_time will not include time elapsed during sleep.


Use timeit.default_timer instead of time.perf_counter. The former will choose the appropriate timer to measure the time performance tuned for your platform and Python version. process_time() does not include the time during sleep and therefore it is not appropriate to measure elapsed time.
I'm using the implementation suggested by Pierre, are the values given in seconds?
This answer seems off-topic (well, the question wasn't very specific). There are two "time" measurement : wall-clock time between two points, of the cpu consumption of the process.
@fjs timeit.default_timer uses time.perf_counter in Python >=3.3 docs.python.org/3/library/timeit.html#timeit.default_timer
elapsed_time return 0.07812 for example. How do I interpret that? Would a second be 1.000 so my script ran in 7,812 milliseconds?
G
Gal Bracha

Measuring time in seconds:

from timeit import default_timer as timer
from datetime import timedelta

start = timer()

# ....
# (your code runs here)
# ...

end = timer()
print(timedelta(seconds=end-start))

Output:

0:00:01.946339

This is the most concise answer with the cleanest output.
C
Community

Given a function you'd like to time,

test.py:

def foo(): 
    # print "hello"   
    return "hello"

the easiest way to use timeit is to call it from the command line:

% python -mtimeit -s'import test' 'test.foo()'
1000000 loops, best of 3: 0.254 usec per loop

Do not try to use time.time or time.clock (naively) to compare the speed of functions. They can give misleading results.

PS. Do not put print statements in a function you wish to time; otherwise the time measured will depend on the speed of the terminal.


N
Nicholas Riley

It's fun to do this with a context-manager that automatically remembers the start time upon entry to a with block, then freezes the end time on block exit. With a little trickery, you can even get a running elapsed-time tally inside the block from the same context-manager function.

The core library doesn't have this (but probably ought to). Once in place, you can do things like:

with elapsed_timer() as elapsed:
    # some lengthy code
    print( "midpoint at %.2f seconds" % elapsed() )  # time so far
    # other lengthy code

print( "all done at %.2f seconds" % elapsed() )

Here's contextmanager code sufficient to do the trick:

from contextlib import contextmanager
from timeit import default_timer

@contextmanager
def elapsed_timer():
    start = default_timer()
    elapser = lambda: default_timer() - start
    yield lambda: elapser()
    end = default_timer()
    elapser = lambda: end-start

And some runnable demo code:

import time

with elapsed_timer() as elapsed:
    time.sleep(1)
    print(elapsed())
    time.sleep(2)
    print(elapsed())
    time.sleep(3)

Note that by design of this function, the return value of elapsed() is frozen on block exit, and further calls return the same duration (of about 6 seconds in this toy example).


Other context manager example: dabeaz.blogspot.fr/2010/02/…
@Jérôme nice example - I adapted it as another answer - stackoverflow.com/a/41408510/243392
S
Saugat

I prefer this. timeit doc is far too confusing.

from datetime import datetime 

start_time = datetime.now() 

# INSERT YOUR CODE 

time_elapsed = datetime.now() - start_time 

print('Time elapsed (hh:mm:ss.ms) {}'.format(time_elapsed))

Note, that there isn't any formatting going on here, I just wrote hh:mm:ss into the printout so one can interpret time_elapsed


I was told that timeit calculates the CPU time, does datetime also take into account CPU time used? Are these the same thing?
It's risky to measure elapsed time this way because datetime.now() can change between the two calls for reasons like network time syncing, daylight savings switchover or the user twiddling the clock.
From Shital Shah's answer: "First, if you are debating between timeit and time.time, the timeit has two advantages: timeit selects the best timer available on your OS and Python version. timeit disables garbage collection, however, this is not something you may or may not want."
M
Mingwei He

Here's another way to do this:

>> from pytictoc import TicToc
>> t = TicToc() # create TicToc instance
>> t.tic() # Start timer
>> # do something
>> t.toc() # Print elapsed time
Elapsed time is 2.612231 seconds.

Comparing with traditional way:

>> from time import time
>> t1 = time()
>> # do something
>> t2 = time()
>> elapsed = t2 - t1
>> print('Elapsed time is %f seconds.' % elapsed)
Elapsed time is 2.612231 seconds.

Installation:

pip install pytictoc

Refer to the PyPi page for more details.


It would be good to explain the advantage of using this library over other approaches.
The nested functionality is actually broken. I opened an issue describing where the problem in the code is but the repo hasn't been maintained in a year so I wouldn't expect a change.
I find the nesting a little confusing. If I were to come across t.tic() buried in the code, it's up to me the developer to keep a mental list of where in the series I should expect this to be. Do you find yourself setting up nests or just multiple tictocs?
@PetarMI : FYI, I just fixed the issue with ttictoc. Quite a mess I had, but it should be good now.
@hlg If I remember correctly, MATLAB uses functions with similar names to time stuff. So I guess the advantage is the resemblance, for people who liked this in MATLAB but switched to Python.
u
user1318499

The easiest way to calculate the duration of an operation:

import time

start_time = time.monotonic()

<operations, programs>

print('seconds: ', time.monotonic() - start_time)

Official docs here.


@user1318499 it's not that it returns negative values, it can return a lower value than a previous call. docs.python.org/3/library/time.html#time.time
It is better to use time.monotonic_ns(), see docs.python.org/3/library/time.html#time.monotonic_ns
S
Shital Shah

Here are my findings after going through many good answers here as well as a few other articles.

First, if you are debating between timeit and time.time, the timeit has two advantages:

timeit selects the best timer available on your OS and Python version. timeit disables garbage collection, however, this is not something you may or may not want.

Now the problem is that timeit is not that simple to use because it needs setup and things get ugly when you have a bunch of imports. Ideally, you just want a decorator or use with block and measure time. Unfortunately, there is nothing built-in available for this so you have two options:

Option 1: Use timebudget library

The timebudget is a versatile and very simple library that you can use just in one line of code after pip install.

@timebudget  # Record how long this function takes
def my_method():
    # my code

Option 2: Use my small module

I created below little timing utility module called timing.py. Just drop this file in your project and start using it. The only external dependency is runstats which is again small.

Now you can time any function just by putting a decorator in front of it:

import timing

@timing.MeasureTime
def MyBigFunc():
    #do something time consuming
    for i in range(10000):
        print(i)

timing.print_all_timings()

If you want to time portion of code then just put it inside with block:

import timing

#somewhere in my code

with timing.MeasureBlockTime("MyBlock"):
    #do something time consuming
    for i in range(10000):
        print(i)

# rest of my code

timing.print_all_timings()

Advantages:

There are several half-backed versions floating around so I want to point out few highlights:

Use timer from timeit instead of time.time for reasons described earlier. You can disable GC during timing if you want. Decorator accepts functions with named or unnamed params. Ability to disable printing in block timing (use with timing.MeasureBlockTime() as t and then t.elapsed). Ability to keep gc enabled for block timing.


Regarding "Ability to disable printing in block timing (use with utils.MeasureBlockTime() as t and then t.elapsed).": this doesn't work as is, as t is None. I think __enter__ needs to return self, and to disable printing, we have to construct it as utils.MeasureBlockTime(no_print=True).
@mic - thanks for pointing this out. I've updated the answer with this and several other enhancements.
C
Community

Using time.time to measure execution gives you the overall execution time of your commands including running time spent by other processes on your computer. It is the time the user notices, but is not good if you want to compare different code snippets / algorithms / functions / ...

More information on timeit:

Using the timeit Module

timeit – Time the execution of small bits of Python code

If you want a deeper insight into profiling:

http://wiki.python.org/moin/PythonSpeed/PerformanceTips#Profiling_Code

How can you profile a python script?

Update: I used http://pythonhosted.org/line_profiler/ a lot during the last year and find it very helpfull and recommend to use it instead of Pythons profile module.


B
Brian Burns

Here's another context manager for timing code -

Usage:

from benchmark import benchmark

with benchmark("Test 1+1"):
    1+1
=>
Test 1+1 : 1.41e-06 seconds

or, if you need the time value

with benchmark("Test 1+1") as b:
    1+1
print(b.time)
=>
Test 1+1 : 7.05e-07 seconds
7.05233786763e-07

benchmark.py:

from timeit import default_timer as timer

class benchmark(object):

    def __init__(self, msg, fmt="%0.3g"):
        self.msg = msg
        self.fmt = fmt

    def __enter__(self):
        self.start = timer()
        return self

    def __exit__(self, *args):
        t = timer() - self.start
        print(("%s : " + self.fmt + " seconds") % (self.msg, t))
        self.time = t

Adapted from http://dabeaz.blogspot.fr/2010/02/context-manager-for-timing-benchmarks.html


L
Leonid Ganeline

Use profiler module. It gives a very detailed profile.

import profile
profile.run('main()')

it outputs something like:

          5 function calls in 0.047 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.000    0.000 :0(exec)
        1    0.047    0.047    0.047    0.047 :0(setprofile)
        1    0.000    0.000    0.000    0.000 <string>:1(<module>)
        0    0.000             0.000          profile:0(profiler)
        1    0.000    0.000    0.047    0.047 profile:0(main())
        1    0.000    0.000    0.000    0.000 two_sum.py:2(twoSum)

I've found it very informative.


What is main()? Would be more useful if you could provide a simple code example.
s
sanchitarora

The python cProfile and pstats modules offer great support for measuring time elapsed in certain functions without having to add any code around the existing functions.

For example if you have a python script timeFunctions.py:

import time

def hello():
    print "Hello :)"
    time.sleep(0.1)

def thankyou():
    print "Thank you!"
    time.sleep(0.05)

for idx in range(10):
    hello()

for idx in range(100):
    thankyou()

To run the profiler and generate stats for the file you can just run:

python -m cProfile -o timeStats.profile timeFunctions.py

What this is doing is using the cProfile module to profile all functions in timeFunctions.py and collecting the stats in the timeStats.profile file. Note that we did not have to add any code to existing module (timeFunctions.py) and this can be done with any module.

Once you have the stats file you can run the pstats module as follows:

python -m pstats timeStats.profile

This runs the interactive statistics browser which gives you a lot of nice functionality. For your particular use case you can just check the stats for your function. In our example checking stats for both functions shows us the following:

Welcome to the profile statistics browser.
timeStats.profile% stats hello
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'hello'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
       10    0.000    0.000    1.001    0.100 timeFunctions.py:3(hello)

timeStats.profile% stats thankyou
<timestamp>    timeStats.profile

         224 function calls in 6.014 seconds

   Random listing order was used
   List reduced from 6 to 1 due to restriction <'thankyou'>

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
      100    0.002    0.000    5.012    0.050 timeFunctions.py:7(thankyou)

The dummy example does not do much but give you an idea of what can be done. The best part about this approach is that I dont have to edit any of my existing code to get these numbers and obviously help with profiling.


All this is fine, but AFAICT this still measures CPU time, not wall clock time.
Actually there is some confusion; it appears cProfile does look at wall-clock time by default. I've upvoted your answer.
FYI: If you get python -m pstats timeStats.profile ValueError: bad marshal data (unknown type code) check your python version you are running. I got this when i ran python3 -m cProfile... and python -m pstats. My mistake but got me for a second, so, I wanted to share don't forget consistency. =)
S
Shai

Here is a tiny timer class that returns "hh:mm:ss" string:

class Timer:
  def __init__(self):
    self.start = time.time()

  def restart(self):
    self.start = time.time()

  def get_time_hhmmss(self):
    end = time.time()
    m, s = divmod(end - self.start, 60)
    h, m = divmod(m, 60)
    time_str = "%02d:%02d:%02d" % (h, m, s)
    return time_str

Usage:

# Start timer
my_timer = Timer()

# ... do something

# Get time string:
time_hhmmss = my_timer.get_time_hhmmss()
print("Time elapsed: %s" % time_hhmmss )

# ... use the timer again
my_timer.restart()

# ... do something

# Get time:
time_hhmmss = my_timer.get_time_hhmmss()

# ... etc

And now with f-strings and format specifications included: time_str = f"{h:02d}:{m:02d}:{s:02d}"
r
raacer

(With Ipython only) you can use %timeit to measure average processing time:

def foo():
    print "hello"

and then:

%timeit foo()

the result is something like:

10000 loops, best of 3: 27 µs per loop

It worth to mention it is possible to pass flags to %timeit, for example -n specifies how many times the code should be repeated.
D
David

I like it simple (python 3):

from timeit import timeit

timeit(lambda: print("hello"))

Output is microseconds for a single execution:

2.430883963010274

Explanation: timeit executes the anonymous function 1 million times by default and the result is given in seconds. Therefore the result for 1 single execution is the same amount but in microseconds on average.

For slow operations add a lower number of iterations or you could be waiting forever:

import time

timeit(lambda: time.sleep(1.5), number=1)

Output is always in seconds for the total number of iterations:

1.5015795179999714

what do you mean by output? does timeit write to stdout?
Nop. I mean the returned value.
D
DmitrySemenov

on python3:

from time import sleep, perf_counter as pc
t0 = pc()
sleep(1)
print(pc()-t0)

elegant and short.


what is this? ms?
@KIC It's in seconds.
r
raacer

One more way to use timeit:

from timeit import timeit

def func():
    return 1 + 1

time = timeit(func, number=1)
print(time)

G
Guillaume Chevalier

To get insight on every function calls recursively, do:

%load_ext snakeviz
%%snakeviz

It just takes those 2 lines of code in a Jupyter notebook, and it generates a nice interactive diagram. For example:

https://i.stack.imgur.com/0ahaw.png

Here is the code. Again, the 2 lines starting with % are the only extra lines of code needed to use snakeviz:

# !pip install snakeviz
%load_ext snakeviz
import glob
import hashlib

%%snakeviz

files = glob.glob('*.txt')
def print_files_hashed(files):
    for file in files:
        with open(file) as f:
            print(hashlib.md5(f.read().encode('utf-8')).hexdigest())
print_files_hashed(files)

It also seems possible to run snakeviz outside notebooks. More info on the snakeviz website.


W
Wojciech Moszczyński

How to measure the time between two operations. Compare the time of two operations.

import time

b = (123*321)*123
t1 = time.time()

c = ((9999^123)*321)^123
t2 = time.time()

print(t2-t1)

7.987022399902344e-05


easy to read, easy to use, accurate enough for approx tests or comparisons. But, as I cannot seem to edit at time of writing, to, 'compare the time of two operations', this should have t0 = time.time() I feel after import line. Then print(t1 -t0) is first operation time. 2 times are needed to compare 2 operations.
r
ruohola

Here's a pretty well documented and fully type hinted decorator I use as a general utility:

from functools import wraps
from time import perf_counter
from typing import Any, Callable, Optional, TypeVar, cast

F = TypeVar("F", bound=Callable[..., Any])


def timer(prefix: Optional[str] = None, precision: int = 6) -> Callable[[F], F]:
    """Use as a decorator to time the execution of any function.

    Args:
        prefix: String to print before the time taken.
            Default is the name of the function.
        precision: How many decimals to include in the seconds value.

    Examples:
        >>> @timer()
        ... def foo(x):
        ...     return x
        >>> foo(123)
        foo: 0.000...s
        123
        >>> @timer("Time taken: ", 2)
        ... def foo(x):
        ...     return x
        >>> foo(123)
        Time taken: 0.00s
        123

    """
    def decorator(func: F) -> F:
        @wraps(func)
        def wrapper(*args: Any, **kwargs: Any) -> Any:
            nonlocal prefix
            prefix = prefix if prefix is not None else f"{func.__name__}: "
            start = perf_counter()
            result = func(*args, **kwargs)
            end = perf_counter()
            print(f"{prefix}{end - start:.{precision}f}s")
            return result
        return cast(F, wrapper)
    return decorator

Example usage:

from timer import timer


@timer(precision=9)
def takes_long(x: int) -> bool:
    return x in (i for i in range(x + 1))


result = takes_long(10**8)
print(result)

Output: takes_long: 4.942629056s True

The doctests can be checked with:

$ python3 -m doctest --verbose -o=ELLIPSIS timer.py

And the type hints with:

$ mypy timer.py

This is super cool, thank you for sharing. I have not encountered the typing library or the nonlocal keyword -- fun to find new things to learn about. I'm having trouble wrapping my head around this: Callable[[AnyF], AnyF]. What does it mean?
@Danny On the top I've defined the type alias AnyF to mean Callable[..., Any], so AnyF is a function that can take any amount of any type arguments and return anything. So Callable[[AnyF], AnyF] would expand to Callable[[Callable[..., Any]], Callable[..., Any]]. This is the type of the return value of timer aka the full type of decorator. It is a function that takes any kind of function as its only argument and returns any kind of function.
Thanks for the explanation! I'm still trying to fully wrap my head around the internals of decorators. This helped a lot!
A
Andreas Herman

Kind of a super later response, but maybe it serves a purpose for someone. This is a way to do it which I think is super clean.

import time

def timed(fun, *args):
    s = time.time()
    r = fun(*args)
    print('{} execution took {} seconds.'.format(fun.__name__, time.time()-s))
    return(r)

timed(print, "Hello")

Keep in mind that "print" is a function in Python 3 and not Python 2.7. However, it works with any other function. Cheers!


How can I print very small times? I kind of am getting 0.0sec always
You can turn this into a decorator; this looks even better to me.
V
Vlad Bezden

You can use timeit.

Here is an example on how to test naive_func that takes parameter using Python REPL:

>>> import timeit                                                                                         

>>> def naive_func(x):                                                                                    
...     a = 0                                                                                             
...     for i in range(a):                                                                                
...         a += i                                                                                        
...     return a                                                                                          

>>> def wrapper(func, *args, **kwargs):                                                                   
...     def wrapper():                                                                                    
...         return func(*args, **kwargs)                                                                  
...     return wrapper                                                                                    

>>> wrapped = wrapper(naive_func, 1_000)                                                                  

>>> timeit.timeit(wrapped, number=1_000_000)                                                              
0.4458435332577161  

You don't need wrapper function if function doesn't have any parameters.


A lambda would be more succinct: print(timeit.timeit(lambda: naive_func(1_000), number=1_000_000))
M
Myeongsik Joo

print_elapsed_time function is below

def print_elapsed_time(prefix=''):
    e_time = time.time()
    if not hasattr(print_elapsed_time, 's_time'):
        print_elapsed_time.s_time = e_time
    else:
        print(f'{prefix} elapsed time: {e_time - print_elapsed_time.s_time:.2f} sec')
        print_elapsed_time.s_time = e_time

use it in this way

print_elapsed_time()
.... heavy jobs ...
print_elapsed_time('after heavy jobs')
.... tons of jobs ...
print_elapsed_time('after tons of jobs')

result is

after heavy jobs elapsed time: 0.39 sec
after tons of jobs elapsed time: 0.60 sec  

the pros and cons of this function is that you don't need to pass start time


N
Ninjakannon

We can also convert time into human-readable time.

import time, datetime

start = time.clock()

def num_multi1(max):
    result = 0
    for num in range(0, 1000):
        if (num % 3 == 0 or num % 5 == 0):
            result += num

    print "Sum is %d " % result

num_multi1(1000)

end = time.clock()
value = end - start
timestamp = datetime.datetime.fromtimestamp(value)
print timestamp.strftime('%Y-%m-%d %H:%M:%S')

L
Lee Netherton

Although it's not strictly asked in the question, it is quite often the case that you want a simple, uniform way to incrementally measure the elapsed time between several lines of code.

If you are using Python 3.8 or above, you can make use of assignment expressions (a.k.a. the walrus operator) to achieve this in a fairly elegant way:

import time

start, times = time.perf_counter(), {}

print("hello")
times["print"] = -start + (start := time.perf_counter())

time.sleep(1.42)
times["sleep"] = -start + (start := time.perf_counter())

a = [n**2 for n in range(10000)]
times["pow"] = -start + (start := time.perf_counter())

print(times)

=>

{'print': 2.193450927734375e-05, 'sleep': 1.4210970401763916, 'power': 0.005671024322509766}

K
Karl

I made a library for this, if you want to measure a function you can just do it like this


from pythonbenchmark import compare, measure
import time

a,b,c,d,e = 10,10,10,10,10
something = [a,b,c,d,e]

@measure
def myFunction(something):
    time.sleep(0.4)

@measure
def myOptimizedFunction(something):
    time.sleep(0.2)

myFunction(input)
myOptimizedFunction(input)

https://github.com/Karlheinzniebuhr/pythonbenchmark


D
Daniel Giger

If you want to be able to time functions conveniently, you can use a simple decorator:

def timing_decorator(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        original_return_val = func(*args, **kwargs)
        end = time.time()
        print("time elapsed in ", func.__name__, ": ", end - start, sep='')
        return original_return_val

    return wrapper

You can use it on a function that you want to time like this:

@timing_decorator
def function_to_time():
    time.sleep(1)

Then any time you call function_to_time, it will print how long it took and the name of the function being timed.


Is there a Python2.x way of doing this without having to import print_function from __future__? I tried to use join but I don't understand it well enough to get it to work.
UPDATE. I figured it out and used this: print(''.join(["time elapsed in ",(func.__name__),": ",str(end - start)]))
A
Asclepius

This unique class-based approach offers a printable string representation, customizable rounding, and convenient access to the elapsed time as a string or a float. It was developed with Python 3.7.

import datetime
import timeit


class Timer:
    """Measure time used."""
    # Ref: https://stackoverflow.com/a/57931660/

    def __init__(self, round_ndigits: int = 0):
        self._round_ndigits = round_ndigits
        self._start_time = timeit.default_timer()

    def __call__(self) -> float:
        return timeit.default_timer() - self._start_time

    def __str__(self) -> str:
        return str(datetime.timedelta(seconds=round(self(), self._round_ndigits)))

Usage:

# Setup timer
>>> timer = Timer()

# Access as a string
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:03.
>>> print(f'Time elapsed is {timer}.')
Time elapsed is 0:00:04.

# Access as a float
>>> timer()
6.841332235
>>> timer()
7.970274425

This is simple and excellent - easy to code; I'm surprised that (a) this kind of functionality isn't present in ANY of the existing Python profilers; and (b) that this answer, including a simple class that can be copied-and-pasted, wasn't offered to this question years ago with many more upvotes.