ChatGPT解决这个技术问题 Extra ChatGPT

Replacements for switch statement in Python?

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.

I want to write a function in Python that returns different fixed values based on the value of an input index.

In other languages I would use a switch or case statement, but Python does not appear to have a switch statement. What are the recommended Python solutions in this scenario?

Related PEP, authored by Guido himself: PEP 3103
@chb In that PEP, Guido doesn't mention that if/elif chains are also a classic source of error. It's a very fragile construct.
Missing from all solutions here is detection of duplicate case values. As a fail-fast principle, this may be a more important loss than performance or the fallthrough feature.
switch is actually more "versatile" than something returning different fixed values based on the value of an input index. It allows for different pieces of code to be executed. It actually does not even need to return a value. I wonder if some of the answers here are good replacements for a general switch statement, or only for the case of returning values with no possibility of executing general pieces of code.
In the same way, syntax like Ruby's case...when... (or Scala's match, Haskell's case, Perl's given/when) meet a common use case and offer a powerful abstraction. if...elif... is a poor substitute.

k
k_ssb

The original answer below was written in 2008. Since then, Python 3.10 (2021) introduced the match-case statement which provides a first-class implementation of a "switch" for Python. For example:

def f(x):
    match x:
        case 'a':
            return 1
        case 'b':
            return 2
        case _:
            return 0   # 0 is the default case if x is not found

The match-case statement is considerably more powerful than this simple example.

You could use a dictionary:

def f(x):
    return {
        'a': 1,
        'b': 2,
    }[x]

What happens if x is not found?
@nick: you can use defaultdict
I'd recommend putting the dict outside of the function if performance is an issue, so it doesn't re-build the dict on every function call
@EliBendersky, Using the get method would probably be more normal than using a collections.defaultdict in this case.
@Nick, An exception is thrown—do }.get(x, default) instead if there should be a default. (Note: this is a lot nicer than what happens if you leave the default off a switch statement!)
N
Nick

If you'd like defaults, you could use the dictionary get(key[, default]) function:

def f(x):
    return {
        'a': 1,
        'b': 2
    }.get(x, 9)    # 9 will be returned default if x is not found

What if 'a' and 'b' match 1, and 'c' and 'd' match 2?
@JM: Well, obviously dictionary lookups don't support fall-throughs. You could do a double dictionary lookup. I.e. 'a' & 'b' point to answer1 and 'c' and 'd' point to answer2, which are contained in a second dictionary.
this is better to pass a default value
There is a problems with this approach, first each time you call f you going to create the dict again second if you have more complex value you can get an exceptions ex. if x is a tuple and we are want to do something like this x = ('a') def f(x): return { 'a': x[0], 'b': x[1] }.get(x[0], 9) This will raise IndexError
@Idan: The question was to replicate switch. I'm sure I could break this code too if I tried putting in odd values. Yes, it will recreate, but it is simple to fix.
b
binarysubstrate

I've always liked doing it this way

result = {
  'a': lambda x: x * 5,
  'b': lambda x: x + 7,
  'c': lambda x: x - 2
}[value](x)

From here


He's asking for fixed values. Why generate a function to calculate something when it's a lookup? Interesting solution for other problems though.
it maybe isn't a good idea to use lambda in this case because lambda is actually called each time the dictionary is built.
Sadly this is the closest people are going to get. Methods which use .get() (like the current highest answers) will need to eagerly evaluate all possibilities before dispatching, and therefore not only are (not just very but) extremely inefficient and also cannot have side-effects; this answer gets around that issue, but is more verbose. I would just use if/elif/else, and even those take just as long to write as 'case'.
wouldn't this evaluate all the functions/lambdas every time in all cases, even if it is only returning one of the results?
@slf No, when the control flow reaches that piece of code, it will build 3 functions (through the use of the 3 lambdas) and then build a dictionary with those 3 functions as values, but they remain uncalled (evaluate is slightly ambiguous in that context) at first. Then the dictionary gets indexed via [value], which will return only one of the 3 functions (assuming value is one of the 3 keys). The function hasn't been called at that point, yet. Then (x) calls the just returned function with x as argument (and the result goes to result). The other 2 functions won't be called.
6
6 revs, 3 users 74%

In addition to the dictionary methods (which I really like, BTW), you can also use if-elif-else to obtain the switch/case/default functionality:

if x == 'a':
    # Do the thing
elif x == 'b':
    # Do the other thing
if x in 'bc':
    # Fall-through by not using elif, but now the default case includes case 'a'!
elif x in 'xyz':
    # Do yet another thing
else:
    # Do the default

This of course is not identical to switch/case - you cannot have fall-through as easily as leaving off the break statement, but you can have a more complicated test. Its formatting is nicer than a series of nested ifs, even though functionally that's what it is closer to.


i'd really prefer this, it uses a standart language construct and doesn't throw a KeyError if no matching case is found
I thought about the dictionary / get way, but the standard way is simply more readable.
@someuser but the fact they can "overlap" is a feature. You just make sure the order is the priority in which matches should occur. As for repeated x: just do an x = the.other.thing before. Typically, you'd have a single if, multiple elif and a single else, as that's easier to understand.
Nice, the "Fall-through by not using elif " is a bit confusing, though. What about this: forget about "fall through" and just accept it as two if/elif/else's?
Also worth mentioning, when using things like x in 'bc', keep in mind that "" in "bc" is True.
C
ChaimG

Python >= 3.10

Wow, Python 3.10+ now has a match/case syntax which is like switch/case and more!

PEP 634 -- Structural Pattern Matching

Selected features of match/case

1 - Match values:

Matching values is similar to a simple switch/case in another language:

match something:
    case 1 | 2 | 3:
        # Match 1-3.
    case _:
        # Anything else.
        # 
        # Match will throw an error if this is omitted 
        # and it doesn't match any of the other patterns.

2 - Match structural patterns:

match something:
    case str() | bytes():  
        # Match a string like object.
    case [str(), int()]:
        # Match a `str` and an `int` sequence 
        # (`list` or a `tuple` but not a `set` or an iterator). 
    case [_, _]:
        # Match a sequence of 2 variables.
        # To prevent a common mistake, sequence patterns don’t match strings.
    case {"bandwidth": 100, "latency": 300}:
        # Match this dict. Extra keys are ignored.

3 - Capture variables

Parse an object; saving it as variables:

match something:
    case [name, count]
        # Match a sequence of any two objects and parse them into the two variables.
    case [x, y, *rest]:
        # Match a sequence of two or more objects, 
        # binding object #3 and on into the rest variable.
    case bytes() | str() as text:
        # Match any string like object and save it to the text variable.

Capture variables can be useful when parsing data (such as JSON or HTML) that may come in one of a number of different patterns.

Capture variables is a feature. But it also means that you need to use dotted constants (ex: COLOR.RED) only. Otherwise, the constant will be treated as a capture variable and overwritten.

More sample usage:

match something:
    case 0 | 1 | 2:
        # Matches 0, 1 or 2 (value).
        print("Small number")
    case [] | [_]:
        # Matches an empty or single value sequence (structure).
        # Matches lists and tuples but not sets.
        print("A short sequence")
    case str() | bytes():
        # Something of `str` or `bytes` type (data type).
        print("Something string-like")
    case _:
        # Anything not matched by the above.
        print("Something else")

Python <= 3.9

My favorite Python recipe for switch/case was:

choices = {'a': 1, 'b': 2}
result = choices.get(key, 'default')

Short and simple for simple scenarios.

Compare to 11+ lines of C code:

// C Language version of a simple 'switch/case'.
switch( key ) 
{
    case 'a' :
        result = 1;
        break;
    case 'b' :
        result = 2;
        break;
    default :
        result = -1;
}

You can even assign multiple variables by using tuples:

choices = {'a': (1, 2, 3), 'b': (4, 5, 6)}
(result1, result2, result3) = choices.get(key, ('default1', 'default2', 'default3'))

I find this to be a more robust answer than the accepted.
@some user: C requires that the return value be the same type for all cases. Python does not. I wanted to highlight this flexibility of Python just in case someone had a situation that warranted such usage.
@some user: Personally, I find {}.get(,) readable. For extra readability for Python beginners you may want to use default = -1; result = choices.get(key, default).
compare with 1 line of c++ result=key=='a'?1:key==b?2:-1
@Jasen one can argue that you can do it in one line of Python as well: result = 1 if key == 'a' else (2 if key == 'b' else 'default'). but is the one liner readable?
K
KurzedMetal
class switch(object):
    value = None
    def __new__(class_, value):
        class_.value = value
        return True

def case(*args):
    return any((arg == switch.value for arg in args))

Usage:

while switch(n):
    if case(0):
        print "You typed zero."
        break
    if case(1, 4, 9):
        print "n is a perfect square."
        break
    if case(2):
        print "n is an even number."
    if case(2, 3, 5, 7):
        print "n is a prime number."
        break
    if case(6, 8):
        print "n is an even number."
        break
    print "Only single-digit numbers are allowed."
    break

Tests:

n = 2
#Result:
#n is an even number.
#n is a prime number.
n = 11
#Result:
#Only single-digit numbers are allowed.

This is not threat safe. If several switches are hit at the same time all switches take the value of the last switch.
While @francescortiz likely means thread safe, it's also not threat safe. It threatens the values of the variables!
The thread safety problem could likely be worked around by using thread-local storage. Or it could be avoided altogether by returning an instance and using that instance for the case comparisons.
@blubberdiblub But then isn't it just more efficient to use a standard if statement?
This is also not safe if used in multiple functions. In the example given, if the case(2) block called another function that uses switch(), then when doing case(2, 3, 5, 7) etc to look for the next case to execute, it will use the switch value set by the other function not the one set by the current switch statement.
d
desertnaut

My favorite one is a really nice recipe. It's the closest one I've seen to actual switch case statements, especially in features.

class switch(object):
    def __init__(self, value):
        self.value = value
        self.fall = False

    def __iter__(self):
        """Return the match method once, then stop"""
        yield self.match
        raise StopIteration
    
    def match(self, *args):
        """Indicate whether or not to enter a case suite"""
        if self.fall or not args:
            return True
        elif self.value in args: # changed for v1.5, see below
            self.fall = True
            return True
        else:
            return False

Here's an example:

# The following example is pretty much the exact use-case of a dictionary,
# but is included for its simplicity. Note that you can include statements
# in each suite.
v = 'ten'
for case in switch(v):
    if case('one'):
        print 1
        break
    if case('two'):
        print 2
        break
    if case('ten'):
        print 10
        break
    if case('eleven'):
        print 11
        break
    if case(): # default, could also just omit condition or 'if True'
        print "something else!"
        # No need to break here, it'll stop anyway

# break is used here to look as much like the real thing as possible, but
# elif is generally just as good and more concise.

# Empty suites are considered syntax errors, so intentional fall-throughs
# should contain 'pass'
c = 'z'
for case in switch(c):
    if case('a'): pass # only necessary if the rest of the suite is empty
    if case('b'): pass
    # ...
    if case('y'): pass
    if case('z'):
        print "c is lowercase!"
        break
    if case('A'): pass
    # ...
    if case('Z'):
        print "c is uppercase!"
        break
    if case(): # default
        print "I dunno what c was!"

# As suggested by Pierre Quentel, you can even expand upon the
# functionality of the classic 'case' statement by matching multiple
# cases in a single shot. This greatly benefits operations such as the
# uppercase/lowercase example above:
import string
c = 'A'
for case in switch(c):
    if case(*string.lowercase): # note the * for unpacking as arguments
        print "c is lowercase!"
        break
    if case(*string.uppercase):
        print "c is uppercase!"
        break
    if case('!', '?', '.'): # normal argument passing style also applies
        print "c is a sentence terminator!"
        break
    if case(): # default
        print "I dunno what c was!"

Some of the comments indicated that a context manager solution using with foo as case rather than for case in foo might be cleaner, and for large switch statements the linear rather than quadratic behavior might be a nice touch. Part of the value in this answer with a for loop is the ability to have breaks and fallthrough, and if we're willing to play with our choice of keywords a little bit we can get that in a context manager too:

class Switch:
    def __init__(self, value):
        self.value = value
        self._entered = False
        self._broken = False
        self._prev = None

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        return False # Allows a traceback to occur

    def __call__(self, *values):
        if self._broken:
            return False
        
        if not self._entered:
            if values and self.value not in values:
                return False
            self._entered, self._prev = True, values
            return True
        
        if self._prev is None:
            self._prev = values
            return True
        
        if self._prev != values:
            self._broken = True
            return False
        
        if self._prev == values:
            self._prev = None
            return False
    
    @property
    def default(self):
        return self()

Here's an example:

# Prints 'bar' then 'baz'.
with Switch(2) as case:
    while case(0):
        print('foo')
    while case(1, 2, 3):
        print('bar')
    while case(4, 5):
        print('baz')
        break
    while case.default:
        print('default')
        break

I would substitute for case in switch() with with switch() as case, makes more sense, since it need s to run only once.
@Skirmantas: Note that with doesn’t allow for break though, so the fallthrough option is taken away.
Apologies for not putting more effort in to determine this myself: a similar answer above is not thread safe. Is this?
@DavidWiniecki The code components missing from the above (and possibly copyright by activestate) appear to be thread safe.
would another version of this be something like if c in set(range(0,9)): print "digit" elif c in set(map(chr, range(ord('a'), ord('z')))): print "lowercase"?
S
Solomon Ucko
class Switch:
    def __init__(self, value):
        self.value = value

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        return False # Allows a traceback to occur

    def __call__(self, *values):
        return self.value in values


from datetime import datetime

with Switch(datetime.today().weekday()) as case:
    if case(0):
        # Basic usage of switch
        print("I hate mondays so much.")
        # Note there is no break needed here
    elif case(1,2):
        # This switch also supports multiple conditions (in one line)
        print("When is the weekend going to be here?")
    elif case(3,4):
        print("The weekend is near.")
    else:
        # Default would occur here
        print("Let's go have fun!") # Didn't use case for example purposes

Using context managers is a good creative solution. I'd recommend adding a bit of explanation and maybe a link to some information on Context Managers to give this post some, well, context ;)
I don't like if/elif chains much but this is both the most creative and the most practical of all the solutions I've seen using Python's existing syntax.
This is really nice. One suggested improvement is to add a (public) value property to the Switch class so that you can reference the case.value within the statement.
This answer provides the most switch like functionality while been quite simple. The problem with using a dict is that you can only retrieve data and can't run functions/methods.
佚名

There's a pattern that I learned from Twisted Python code.

class SMTP:
    def lookupMethod(self, command):
        return getattr(self, 'do_' + command.upper(), None)
    def do_HELO(self, rest):
        return 'Howdy ' + rest
    def do_QUIT(self, rest):
        return 'Bye'

SMTP().lookupMethod('HELO')('foo.bar.com') # => 'Howdy foo.bar.com'
SMTP().lookupMethod('QUIT')('') # => 'Bye'

You can use it any time you need to dispatch on a token and execute extended piece of code. In a state machine you would have state_ methods, and dispatch on self.state. This switch can be cleanly extended by inheriting from base class and defining your own do_ methods. Often times you won't even have do_ methods in the base class.

Edit: how exactly is that used

In case of SMTP you will receive HELO from the wire. The relevant code (from twisted/mail/smtp.py, modified for our case) looks like this

class SMTP:
    # ...

    def do_UNKNOWN(self, rest):
        raise NotImplementedError, 'received unknown command'

    def state_COMMAND(self, line):
        line = line.strip()
        parts = line.split(None, 1)
        if parts:
            method = self.lookupMethod(parts[0]) or self.do_UNKNOWN
            if len(parts) == 2:
                return method(parts[1])
            else:
                return method('')
        else:
            raise SyntaxError, 'bad syntax'

SMTP().state_COMMAND('   HELO   foo.bar.com  ') # => Howdy foo.bar.com

You'll receive ' HELO foo.bar.com ' (or you might get 'QUIT' or 'RCPT TO: foo'). This is tokenized into parts as ['HELO', 'foo.bar.com']. The actual method lookup name is taken from parts[0].

(The original method is also called state_COMMAND, because it uses the same pattern to implement a state machine, i.e. getattr(self, 'state_' + self.mode))


I don't see the benefit from this pattern over just calling the methods directly: SMTP().do_HELO('foo.bar.com') OK, there can be common code in the lookupMethod, but since that also can be overwritten by the subclass I don't see what you gain from the indirection.
You wouldn't know what method to call in advance, that is to say 'HELO' comes from a variable. i've added usage example to the original post
May I suggest simply: eval('SMTP().do_' + command)('foo.bar.com')
eval? seriously? and instead of instantiating one method per call, we can very well instantiate once and use it in all calls provided it has no internal state.
IMO the real key here is the dispatching using getattr to specify a function to run. If the methods were in a module, you could do getattr(locals(), func_name) to get it. The 'do_' part is good for security/errors so only funcs with the prefix can be called. SMTP itself calls lookupMethod. Ideally the outside doesn't know about any of this. It doesn't really make sense to do SMTP().lookupMethod(name)(data). Since the command and data are in one string and SMTP parses it, that makes more sense. Lastly, SMTP probably has other shared state which justifies it being a class.
P
Peter Mortensen

I'm just going to drop my two cents in here. The reason there isn't a case/switch statement in Python is because Python follows the principle of "there's only one right way to do something". So obviously you could come up with various ways of recreating switch/case functionality, but the Pythonic way of accomplishing this is the if/elif construct. I.e.,

if something:
    return "first thing"
elif somethingelse:
    return "second thing"
elif yetanotherthing:
    return "third thing"
else:
    return "default thing"

I just felt PEP 8 deserved a nod here. One of the beautiful things about Python is its simplicity and elegance. That is largely derived from principles laid out in PEP 8, including "There's only one right way to do something."


So why does Python have for loops and while loops? Everything you can do with a for loop you can implement with a while loop.
True. Switch/case are too often abused by beginning programmers. What they really want is the strategy pattern.
Sounds like Python wishes it was Clojure
@T.W.R.Cole I don't think so, Python was doing it first. Python has been around since 1990 and Clojure since 2007.
No fallthru support
P
Peter Mortensen

Let's say you don't want to just return a value, but want to use methods that change something on an object. Using the approach stated here would be:

result = {
  'a': obj.increment(x),
  'b': obj.decrement(x)
}.get(value, obj.default(x))

Here Python evaluates all methods in the dictionary.

So even if your value is 'a', the object will get incremented and decremented by x.

Solution:

func, args = {
  'a' : (obj.increment, (x,)),
  'b' : (obj.decrement, (x,)),
}.get(value, (obj.default, (x,)))

result = func(*args)

So you get a list containing a function and its arguments. This way, only the function pointer and the argument list get returned, not evaluated. 'result' then evaluates the returned function call.


A
Alejandro Quintanar

Solution to run functions:

result = {
    'case1':     foo1, 
    'case2':     foo2,
    'case3':     foo3,
}.get(option)(parameters_optional)

where foo1(), foo2() and foo3() are functions

Example 1 (with parameters):

option = number['type']
result = {
    'number':     value_of_int,  # result = value_of_int(number['value'])
    'text':       value_of_text, # result = value_of_text(number['value'])
    'binary':     value_of_bin,  # result = value_of_bin(number['value'])
}.get(option)(value['value'])

Example 2 (no parameters):

option = number['type']
result = {
    'number':     func_for_number, # result = func_for_number()
    'text':       func_for_text,   # result = func_for_text()
    'binary':     func_for_bin,    # result = func_for_bin()
}.get(option)()

Example 4 (only values):

option = number['type']
result = {
    'number':    lambda: 10,       # result = 10
    'text':      lambda: 'ten',    # result = 'ten'
    'binary':    lambda: 0b101111, # result = 47
}.get(option)()

Yes, for example if your variable option=="case2" your result=foo2()
and so and so forth.
Yes, I understand the purpose. But my concern is that if you only want foo2(), the foo1(), foo3(), and default() functions are all also going to run, meaning things could take a long time
omit the () inside the dictionary. use get(option)(). problem solved.
Excellent the use of () is a grate solution, I made a gist to test it gist.github.com/aquintanar/01e9920d8341c5c6252d507669758fe5
P
Peter Mortensen

If you have a complicated case block you can consider using a function dictionary lookup table...

If you haven't done this before it's a good idea to step into your debugger and view exactly how the dictionary looks up each function.

NOTE: Do not use "()" inside the case/dictionary lookup or it will call each of your functions as the dictionary / case block is created. Remember this because you only want to call each function once using a hash style lookup.

def first_case():
    print "first"

def second_case():
    print "second"

def third_case():
    print "third"

mycase = {
'first': first_case, #do not use ()
'second': second_case, #do not use ()
'third': third_case #do not use ()
}
myfunc = mycase['first']
myfunc()

I like your solution. But, what if I just need to pass some variables or objects?
This will not work if the method is expecting parameters.
This is the method that is officially recommended in the Python FAQ
It can work with parameters check stackoverflow.com/a/47378377/6210975
P
Peter Mortensen

If you're searching extra-statement, as "switch", I built a Python module that extends Python. It's called ESPY as "Enhanced Structure for Python" and it's available for both Python 2.x and Python 3.x.

For example, in this case, a switch statement could be performed by the following code:

macro switch(arg1):
    while True:
        cont=False
        val=%arg1%
        socket case(arg2):
            if val==%arg2% or cont:
                cont=True
                socket
        socket else:
            socket
        break

That can be used like this:

a=3
switch(a):
    case(0):
        print("Zero")
    case(1):
        print("Smaller than 2"):
        break
    else:
        print ("greater than 1")

So espy translate it in Python as:

a=3
while True:
    cont=False
    if a==0 or cont:
        cont=True
        print ("Zero")
    if a==1 or cont:
        cont=True
        print ("Smaller than 2")
        break
    print ("greater than 1")
    break

Very cool, but what's the point of the while True: at the top of the generated Python code? It'll inevitably hit the break at the bottom of the generated Python code, so it seems to me that both the while True: and break could be removed. Further, is ESPY smart enough to change the name of cont if the user uses that same name in their own code? In any event, I want to use vanilla Python so I won't use this, but it's cool none-the-less. +1 for sheer coolness.
@ArtOfWarfare The reason for the while True: and breaks is to allow but not require fall-through.
Is this module still available?
a
abarnert

Most of the answers here are pretty old, and especially the accepted ones, so it seems worth updating.

First, the official Python FAQ covers this, and recommends the elif chain for simple cases and the dict for larger or more complex cases. It also suggests a set of visit_ methods (a style used by many server frameworks) for some cases:

def dispatch(self, value):
    method_name = 'visit_' + str(value)
    method = getattr(self, method_name)
    method()

The FAQ also mentions PEP 275, which was written to get an official once-and-for-all decision on adding C-style switch statements. But that PEP was actually deferred to Python 3, and it was only officially rejected as a separate proposal, PEP 3103. The answer was, of course, no—but the two PEPs have links to additional information if you're interested in the reasons or the history.

One thing that came up multiple times (and can be seen in PEP 275, even though it was cut out as an actual recommendation) is that if you're really bothered by having 8 lines of code to handle 4 cases, vs. the 6 lines you'd have in C or Bash, you can always write this:

if x == 1: print('first')
elif x == 2: print('second')
elif x == 3: print('third')
else: print('did not place')

This isn't exactly encouraged by PEP 8, but it's readable and not too unidiomatic.

Over the more than a decade since PEP 3103 was rejected, the issue of C-style case statements, or even the slightly more powerful version in Go, has been considered dead; whenever anyone brings it up on python-ideas or -dev, they're referred to the old decision.

However, the idea of full ML-style pattern matching arises every few years, especially since languages like Swift and Rust have adopted it. The problem is that it's hard to get much use out of pattern matching without algebraic data types. While Guido has been sympathetic to the idea, nobody's come up with a proposal that fits into Python very well. (You can read my 2014 strawman for an example.) This could change with dataclass in 3.7 and some sporadic proposals for a more powerful enum to handle sum types, or with various proposals for different kinds of statement-local bindings (like PEP 3150, or the set of proposals currently being discussed on -ideas). But so far, it hasn't.

There are also occasionally proposals for Perl 6-style matching, which is basically a mishmash of everything from elif to regex to single-dispatch type-switching.


P
Peter Mortensen

Expanding on the "dict as switch" idea. If you want to use a default value for your switch:

def f(x):
    try:
        return {
            'a': 1,
            'b': 2,
        }[x]
    except KeyError:
        return 'default'

I think it's clearer to use .get() on the dict with the default specified. I prefer to leave Exceptions for exceptional circumstances, and it cuts three lines of code and a level of indentation without being obscure.
This is an exceptional circumstance. It may or may not be a rare circumstance depending on useful, but it's definitely an exception (fall back on 'default') from the rule (get something from this dict). By design, Python programs use exceptions at the drop of a hat. That being said, using get could potentially make the code a bit nicer.
P
Peter Mortensen

I found that a common switch structure:

switch ...parameter...
case p1: v1; break;
case p2: v2; break;
default: v3;

can be expressed in Python as follows:

(lambda x: v1 if p1(x) else v2 if p2(x) else v3)

or formatted in a clearer way:

(lambda x:
     v1 if p1(x) else
     v2 if p2(x) else
     v3)

Instead of being a statement, the Python version is an expression, which evaluates to a value.


Also instead of ...parameter... and p1(x) how about parameter and p1==parameter
@BobStein-VisiBone hi, here is an example that runs in my python session: f = lambda x: 'a' if x==0 else 'b' if x==1 else 'c'. When I later called f(2), I got 'c'; f(1), 'b'; and f(0), 'a'. As for p1(x), it denotes a predicate; as long as it returns True or False, no matter it is a function call or a expression, it's fine.
@BobStein-VisiBone Yes, you are right! Thank :) For the multi-line expression to work, parentheses should be placed, either as in your suggestion, or as in my modified example.
Excellent. Now I'll delete all my comments about the parens.
b
bluish

The solutions I use:

A combination of 2 of the solutions posted here, which is relatively easy to read and supports defaults.

result = {
  'a': lambda x: x * 5,
  'b': lambda x: x + 7,
  'c': lambda x: x - 2
}.get(whatToUse, lambda x: x - 22)(value)

where

.get('c', lambda x: x - 22)(23)

looks up "lambda x: x - 2" in the dict and uses it with x=23

.get('xxx', lambda x: x - 22)(44)

doesn't find it in the dict and uses the default "lambda x: x - 22" with x=44.


J
JD Graham

I didn't find the simple answer I was looking for anywhere on Google search. But I figured it out anyway. It's really quite simple. Decided to post it, and maybe prevent a few less scratches on someone else's head. The key is simply "in" and tuples. Here is the switch statement behavior with fall-through, including RANDOM fall-through.

l = ['Dog', 'Cat', 'Bird', 'Bigfoot',
     'Dragonfly', 'Snake', 'Bat', 'Loch Ness Monster']

for x in l:
    if x in ('Dog', 'Cat'):
        x += " has four legs"
    elif x in ('Bat', 'Bird', 'Dragonfly'):
        x += " has wings."
    elif x in ('Snake',):
        x += " has a forked tongue."
    else:
        x += " is a big mystery by default."
    print(x)

print()

for x in range(10):
    if x in (0, 1):
        x = "Values 0 and 1 caught here."
    elif x in (2,):
        x = "Value 2 caught here."
    elif x in (3, 7, 8):
        x = "Values 3, 7, 8 caught here."
    elif x in (4, 6):
        x = "Values 4 and 6 caught here"
    else:
        x = "Values 5 and 9 caught in default."
    print(x)

Provides:

Dog has four legs
Cat has four legs
Bird has wings.
Bigfoot is a big mystery by default.
Dragonfly has wings.
Snake has a forked tongue.
Bat has wings.
Loch Ness Monster is a big mystery by default.

Values 0 and 1 caught here.
Values 0 and 1 caught here.
Value 2 caught here.
Values 3, 7, 8 caught here.
Values 4 and 6 caught here
Values 5 and 9 caught in default.
Values 4 and 6 caught here
Values 3, 7, 8 caught here.
Values 3, 7, 8 caught here.
Values 5 and 9 caught in default.

Where exactly is fallthrough here?
Oops! There is fall through there, but I'm not contributing to Stack Overflow anymore. Don't like THEM at all. I like the contributions by others, but just not Stackoverflow. If you're using fall through for FUNCTIONALITY then you want to CATCH certain conditions in all in one case statement in a switch (a catch all), until you reach a break statement in a switch.
Here both the values "Dog" and "Cat" FALL THROUGH and are handled by the SAME functionality, which is they are defined as having "four legs." It's an ABSTRACT equivalent to fall through and different values handled by the SAME case statement where a break occurs.
@JDGraham I think Jonas meant another aspect of fallthrough, which happens when programmer occasionally forget to write break in the end of the code for a case. But I think we don't need such "fallthrough" :)
P
Peter Mortensen

You can use a dispatched dict:

#!/usr/bin/env python


def case1():
    print("This is case 1")

def case2():
    print("This is case 2")

def case3():
    print("This is case 3")


token_dict = {
    "case1" : case1,
    "case2" : case2,
    "case3" : case3,
}


def main():
    cases = ("case1", "case3", "case2", "case1")
    for case in cases:
        token_dict[case]()


if __name__ == '__main__':
    main()

Output:

This is case 1
This is case 3
This is case 2
This is case 1

I some times use this but it is not clear as same as if/elif/elif/else
p
pbfy0
# simple case alternative

some_value = 5.0

# this while loop block simulates a case block

# case
while True:

    # case 1
    if some_value > 5:
        print ('Greater than five')
        break

    # case 2
    if some_value == 5:
        print ('Equal to five')
        break

    # else case 3
    print ( 'Must be less than 5')
    break

V
Vikhyat Agarwal
def f(x):
    dictionary = {'a':1, 'b':2, 'c':3}
    return dictionary.get(x,'Not Found') 
##Returns the value for the letter x;returns 'Not Found' if x isn't a key in the dictionary

Consider including a short description of your code and how it solves the posted question
Okay, I've added a comment for that now.
Y
Yster

I was quite confused after reading the accepted answer, but this cleared it all up:

def numbers_to_strings(argument):
    switcher = {
        0: "zero",
        1: "one",
        2: "two",
    }
    return switcher.get(argument, "nothing")

This code is analogous to:

function(argument){
    switch(argument) {
        case 0:
            return "zero";
        case 1:
            return "one";
        case 2:
            return "two";
        default:
            return "nothing";
    }
}

Check the Source for more about dictionary mapping to functions.


Reading what answer? There is more than one.
@PeterMortensen - The accepted answer......fixed it.
C
Community

I liked Mark Bies's answer

Since the x variable must used twice, I modified the lambda functions to parameterless.

I have to run with results[value](value)

In [2]: result = {
    ...:   'a': lambda x: 'A',
    ...:   'b': lambda x: 'B',
    ...:   'c': lambda x: 'C'
    ...: }
    ...: result['a']('a')
    ...: 
Out[2]: 'A'

In [3]: result = {
    ...:   'a': lambda : 'A',
    ...:   'b': lambda : 'B',
    ...:   'c': lambda : 'C',
    ...:   None: lambda : 'Nothing else matters'

    ...: }
    ...: result['a']()
    ...: 
Out[3]: 'A'

Edit: I noticed that I can use None type with with dictionaries. So this would emulate switch ; case else


Doesn't the None case emulate simply result[None]() ?
Yes, exactly. I mean result = {'a': 100, None:5000}; result[None]
Just checking that no one is thinking None: behaves like default:.
e
emu
def f(x):
     return 1 if x == 'a' else\
            2 if x in 'bcd' else\
            0 #default

Short and easy to read, has a default value and supports expressions in both conditions and return values.

However, it is less efficient than the solution with a dictionary. For example, Python has to scan through all the conditions before returning the default value.


S
Solomon Ucko

Simple, not tested; each condition is evaluated independently: there is no fall-through, but all cases are evaluated (although the expression to switch on is only evaluated once), unless there is a break statement. For example,

for case in [expression]:
    if case == 1:
        print(end='Was 1. ')

    if case == 2:
        print(end='Was 2. ')
        break

    if case in (1, 2):
        print(end='Was 1 or 2. ')

    print(end='Was something. ')

prints Was 1. Was 1 or 2. Was something. (Dammit! Why can't I have trailing whitespace in inline code blocks?) if expression evaluates to 1, Was 2. if expression evaluates to 2, or Was something. if expression evaluates to something else.


Well, the fall through works, but only to go to do_default.
W
Woody1193

There have been a lot of answers so far that have said, "we don't have a switch in Python, do it this way". However, I would like to point out that the switch statement itself is an easily-abused construct that can and should be avoided in most cases because they promote lazy programming. Case in point:

def ToUpper(lcChar):
    if (lcChar == 'a' or lcChar == 'A'):
        return 'A'
    elif (lcChar == 'b' or lcChar == 'B'):
        return 'B'
    ...
    elif (lcChar == 'z' or lcChar == 'Z'):
        return 'Z'
    else:
        return None        # or something

Now, you could do this with a switch-statement (if Python offered one) but you'd be wasting your time because there are methods that do this just fine. Or maybe, you have something less obvious:

def ConvertToReason(code):
    if (code == 200):
        return 'Okay'
    elif (code == 400):
        return 'Bad Request'
    elif (code == 404):
        return 'Not Found'
    else:
        return None

However, this sort of operation can and should be handled with a dictionary because it will be faster, less complex, less prone to error and more compact.

And the vast majority of "use cases" for switch statements will fall into one of these two cases; there's just very little reason to use one if you've thought about your problem thoroughly.

So, rather than asking "how do I switch in Python?", perhaps we should ask, "why do I want to switch in Python?" because that's often the more interesting question and will often expose flaws in the design of whatever you're building.

Now, that isn't to say that switches should never be used either. State machines, lexers, parsers and automata all use them to some degree and, in general, when you start from a symmetrical input and go to an asymmetrical output they can be useful; you just need to make sure that you don't use the switch as a hammer because you see a bunch of nails in your code.


P
Peter Mortensen

A solution I tend to use which also makes use of dictionaries is:

def decision_time( key, *args, **kwargs):
    def action1()
        """This function is a closure - and has access to all the arguments"""
        pass
    def action2()
        """This function is a closure - and has access to all the arguments"""
        pass
    def action3()
        """This function is a closure - and has access to all the arguments"""
        pass

   return {1:action1, 2:action2, 3:action3}.get(key,default)()

This has the advantage that it doesn't try to evaluate the functions every time, and you just have to ensure that the outer function gets all the information that the inner functions need.


W
William H. Hooper

Defining:

def switch1(value, options):
  if value in options:
    options[value]()

allows you to use a fairly straightforward syntax, with the cases bundled into a map:

def sample1(x):
  local = 'betty'
  switch1(x, {
    'a': lambda: print("hello"),
    'b': lambda: (
      print("goodbye," + local),
      print("!")),
    })

I kept trying to redefine switch in a way that would let me get rid of the "lambda:", but gave up. Tweaking the definition:

def switch(value, *maps):
  options = {}
  for m in maps:
    options.update(m)
  if value in options:
    options[value]()
  elif None in options:
    options[None]()

Allowed me to map multiple cases to the same code, and to supply a default option:

def sample(x):
  switch(x, {
    _: lambda: print("other") 
    for _ in 'cdef'
    }, {
    'a': lambda: print("hello"),
    'b': lambda: (
      print("goodbye,"),
      print("!")),
    None: lambda: print("I dunno")
    })

Each replicated case has to be in its own dictionary; switch() consolidates the dictionaries before looking up the value. It's still uglier than I'd like, but it has the basic efficiency of using a hashed lookup on the expression, rather than a loop through all the keys.


C
Community

Expanding on Greg Hewgill's answer - We can encapsulate the dictionary-solution using a decorator:

def case(callable):
    """switch-case decorator"""
    class case_class(object):
        def __init__(self, *args, **kwargs):
            self.args = args
            self.kwargs = kwargs

        def do_call(self):
            return callable(*self.args, **self.kwargs)

return case_class

def switch(key, cases, default=None):
    """switch-statement"""
    ret = None
    try:
        ret = case[key].do_call()
    except KeyError:
        if default:
            ret = default.do_call()
    finally:
        return ret

This can then be used with the @case-decorator

@case
def case_1(arg1):
    print 'case_1: ', arg1

@case
def case_2(arg1, arg2):
    print 'case_2'
    return arg1, arg2

@case
def default_case(arg1, arg2, arg3):
    print 'default_case: ', arg1, arg2, arg3

ret = switch(somearg, {
    1: case_1('somestring'),
    2: case_2(13, 42)
}, default_case(123, 'astring', 3.14))

print ret

The good news are that this has already been done in NeoPySwitch-module. Simply install using pip:

pip install NeoPySwitch