I was asked this question in a job interview, and I'd like to know how others would solve it. I'm most comfortable with Java, but solutions in other languages are welcome.
Given an array of numbers, nums, return an array of numbers products, where products[i] is the product of all nums[j], j != i. Input : [1, 2, 3, 4, 5] Output: [(2*3*4*5), (1*3*4*5), (1*2*4*5), (1*2*3*5), (1*2*3*4)] = [120, 60, 40, 30, 24] You must do this in O(N) without using division.
[interview-questions]
tag looking for it. Do you have a link if you've found it?
An explanation of polygenelubricants method is:
The trick is to construct the arrays (in the case for 4 elements):
{ 1, a[0], a[0]*a[1], a[0]*a[1]*a[2], }
{ a[1]*a[2]*a[3], a[2]*a[3], a[3], 1, }
Both of which can be done in O(n) by starting at the left and right edges respectively.
Then, multiplying the two arrays element-by-element gives the required result.
My code would look something like this:
int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
products_below[i] = p;
p *= a[i];
}
int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
products_above[i] = p;
p *= a[i];
}
int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
products[i] = products_below[i] * products_above[i];
}
If you need the solution be O(1) in space as well, you can do this (which is less clear in my opinion):
int a[N] // This is the input
int products[N];
// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
products[i] = p;
p *= a[i];
}
// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
products[i] *= p;
p *= a[i];
}
Here is a small recursive function (in C++) to do the modification in-place. It requires O(n) extra space (on stack) though. Assuming the array is in a
and N
holds the array length, we have:
int multiply(int *a, int fwdProduct, int indx) {
int revProduct = 1;
if (indx < N) {
revProduct = multiply(a, fwdProduct*a[indx], indx+1);
int cur = a[indx];
a[indx] = fwdProduct * revProduct;
revProduct *= cur;
}
return revProduct;
}
num[N-1]
; then on the way back it calculates the second part of the multiplication which is then used to modify the number array in place.
Here's my attempt to solve it in Java. Apologies for the non-standard formatting, but the code has a lot of duplication, and this is the best I can do to make it readable.
import java.util.Arrays;
public class Products {
static int[] products(int... nums) {
final int N = nums.length;
int[] prods = new int[N];
Arrays.fill(prods, 1);
for (int
i = 0, pi = 1 , j = N-1, pj = 1 ;
(i < N) && (j >= 0) ;
pi *= nums[i++] , pj *= nums[j--] )
{
prods[i] *= pi ; prods[j] *= pj ;
}
return prods;
}
public static void main(String[] args) {
System.out.println(
Arrays.toString(products(1, 2, 3, 4, 5))
); // prints "[120, 60, 40, 30, 24]"
}
}
The loop invariants are pi = nums[0] * nums[1] *.. nums[i-1]
and pj = nums[N-1] * nums[N-2] *.. nums[j+1]
. The i
part on the left is the "prefix" logic, and the j
part on the right is the "suffix" logic.
Recursive one-liner
Jasmeet gave a (beautiful!) recursive solution; I've turned it into this (hideous!) Java one-liner. It does in-place modification, with O(N)
temporary space in the stack.
static int multiply(int[] nums, int p, int n) {
return (n == nums.length) ? 1
: nums[n] * (p = multiply(nums, nums[n] * (nums[n] = p), n + 1))
+ 0*(nums[n] *= p);
}
int[] arr = {1,2,3,4,5};
multiply(arr, 1, 0);
System.out.println(Arrays.toString(arr));
// prints "[120, 60, 40, 30, 24]"
the code has a lot of duplication
nah. The problem has a notable amount of symmetry, highlighted by your a approach and formatting.
Translating Michael Anderson's solution into Haskell:
otherProducts xs = zipWith (*) below above
where below = scanl (*) 1 $ init xs
above = tail $ scanr (*) 1 xs
Sneakily circumventing the "no divisions" rule:
sum = 0.0
for i in range(a):
sum += log(a[i])
for i in range(a):
output[i] = exp(sum - log(a[i]))
Here you go, simple and clean solution with O(N) complexity:
int[] a = {1,2,3,4,5};
int[] r = new int[a.length];
int x = 1;
r[0] = 1;
for (int i=1;i<a.length;i++){
r[i]=r[i-1]*a[i-1];
}
for (int i=a.length-1;i>0;i--){
x=x*a[i];
r[i-1]=x*r[i-1];
}
for (int i=0;i<r.length;i++){
System.out.println(r[i]);
}
Travel Left->Right and keep saving product. Call it Past. -> O(n) Travel Right -> left keep the product. Call it Future. -> O(n) Result[i] = Past[i-1] * future[i+1] -> O(n) Past[-1] = 1; and Future[n+1]=1;
O(n)
C++, O(n):
long long prod = accumulate(in.begin(), in.end(), 1LL, multiplies<int>());
transform(in.begin(), in.end(), back_inserter(res),
bind1st(divides<long long>(), prod));
Here is my solution in modern C++. It makes use of std::transform
and is pretty easy to remember.
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
vector<int>& multiply_up(vector<int>& v){
v.insert(v.begin(),1);
transform(v.begin()+1, v.end()
,v.begin()
,v.begin()+1
,[](auto const& a, auto const& b) { return b*a; }
);
v.pop_back();
return v;
}
int main() {
vector<int> v = {1,2,3,4,5};
auto vr = v;
reverse(vr.begin(),vr.end());
multiply_up(v);
multiply_up(vr);
reverse(vr.begin(),vr.end());
transform(v.begin(),v.end()
,vr.begin()
,v.begin()
,[](auto const& a, auto const& b) { return b*a; }
);
for(auto& i: v) cout << i << " ";
}
Precalculate the product of the numbers to the left and to the right of each element. For every element the desired value is the product of it's neigbors's products.
#include <stdio.h>
unsigned array[5] = { 1,2,3,4,5};
int main(void)
{
unsigned idx;
unsigned left[5]
, right[5];
left[0] = 1;
right[4] = 1;
/* calculate products of numbers to the left of [idx] */
for (idx=1; idx < 5; idx++) {
left[idx] = left[idx-1] * array[idx-1];
}
/* calculate products of numbers to the right of [idx] */
for (idx=4; idx-- > 0; ) {
right[idx] = right[idx+1] * array[idx+1];
}
for (idx=0; idx <5 ; idx++) {
printf("[%u] Product(%u*%u) = %u\n"
, idx, left[idx] , right[idx] , left[idx] * right[idx] );
}
return 0;
}
Result:
$ ./a.out
[0] Product(1*120) = 120
[1] Product(1*60) = 60
[2] Product(2*20) = 40
[3] Product(6*5) = 30
[4] Product(24*1) = 24
(UPDATE: now I look closer, this uses the same method as Michael Anderson, Daniel Migowski and polygenelubricants above)
Tricky:
Use the following:
public int[] calc(int[] params) {
int[] left = new int[n-1]
in[] right = new int[n-1]
int fac1 = 1;
int fac2 = 1;
for( int i=0; i<n; i++ ) {
fac1 = fac1 * params[i];
fac2 = fac2 * params[n-i];
left[i] = fac1;
right[i] = fac2;
}
fac = 1;
int[] results = new int[n];
for( int i=0; i<n; i++ ) {
results[i] = left[i] * right[i];
}
Yes, I am sure i missed some i-1 instead of i, but thats the way to solve it.
This is O(n^2) but f# is soooo beautiful:
List.fold (fun seed i -> List.mapi (fun j x -> if i=j+1 then x else x*i) seed)
[1;1;1;1;1]
[1..5]
There also is a O(N^(3/2)) non-optimal solution. It is quite interesting, though.
First preprocess each partial multiplications of size N^0.5(this is done in O(N) time complexity). Then, calculation for each number's other-values'-multiple can be done in 2*O(N^0.5) time(why? because you only need to multiple the last elements of other ((N^0.5) - 1) numbers, and multiply the result with ((N^0.5) - 1) numbers that belong to the group of the current number). Doing this for each number, one can get O(N^(3/2)) time.
Example:
4 6 7 2 3 1 9 5 8
partial results: 4*6*7 = 168 2*3*1 = 6 9*5*8 = 360
To calculate the value of 3, one needs to multiply the other groups' values 168*360, and then with 2*1.
public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5 };
int[] result = { 1, 1, 1, 1, 1 };
for (int i = 0; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
result[i] *= arr[j];
}
for (int k = arr.length - 1; k > i; k--) {
result[i] *= arr[k];
}
}
for (int i : result) {
System.out.println(i);
}
}
This solution i came up with and i found it so clear what do you think!?
Based on Billz answer--sorry I can't comment, but here is a scala version that correctly handles duplicate items in the list, and is probably O(n):
val list1 = List(1, 7, 3, 3, 4, 4)
val view = list1.view.zipWithIndex map { x => list1.view.patch(x._2, Nil, 1).reduceLeft(_*_)}
view.force
returns:
List(1008, 144, 336, 336, 252, 252)
Adding my javascript solution here as I didn't find anyone suggesting this. What is to divide, except to count the number of times you can extract a number from another number? I went through calculating the product of the whole array, and then iterate over each element, and substracting the current element until zero:
//No division operation allowed
// keep substracting divisor from dividend, until dividend is zero or less than divisor
function calculateProducsExceptCurrent_NoDivision(input){
var res = [];
var totalProduct = 1;
//calculate the total product
for(var i = 0; i < input.length; i++){
totalProduct = totalProduct * input[i];
}
//populate the result array by "dividing" each value
for(var i = 0; i < input.length; i++){
var timesSubstracted = 0;
var divisor = input[i];
var dividend = totalProduct;
while(divisor <= dividend){
dividend = dividend - divisor;
timesSubstracted++;
}
res.push(timesSubstracted);
}
return res;
}
def productify(arr, prod, i):
if i < len(arr):
prod.append(arr[i - 1] * prod[i - 1]) if i > 0 else prod.append(1)
retval = productify(arr, prod, i + 1)
prod[i] *= retval
return retval * arr[i]
return 1
if __name__ == "__main__":
arr = [1, 2, 3, 4, 5]
prod = []
productify(arr, prod, 0)
print(prod)
Well,this solution can be considered that of C/C++. Lets say we have an array "a" containing n elements like a[n],then the pseudo code would be as below.
for(j=0;j<n;j++)
{
prod[j]=1;
for (i=0;i<n;i++)
{
if(i==j)
continue;
else
prod[j]=prod[j]*a[i];
}
One more solution, Using division. with twice traversal. Multiply all the elements and then start dividing it by each element.
{- Recursive solution using sqrt(n) subsets. Runs in O(n). Recursively computes the solution on sqrt(n) subsets of size sqrt(n). Then recurses on the product sum of each subset. Then for each element in each subset, it computes the product with the product sum of all other products. Then flattens all subsets. Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n Suppose that T(n) ≤ cn in O(n). T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n ≤ c*n + c*sqrt(n) + n ≤ (2c+1)*n ∈ O(n) Note that ceiling(sqrt(n)) can be computed using a binary search and O(logn) iterations, if the sqrt instruction is not permitted. -} otherProducts [] = [] otherProducts [x] = [1] otherProducts [x,y] = [y,x] otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts where n = length a -- Subset size. Require that 1 < s < n. s = ceiling $ sqrt $ fromIntegral n solvedSubsets = map otherProducts subsets subsetOtherProducts = otherProducts $ map product subsets subsets = reverse $ loop a [] where loop [] acc = acc loop a acc = loop (drop s a) ((take s a):acc)
Here is my code:
int multiply(int a[],int n,int nextproduct,int i)
{
int prevproduct=1;
if(i>=n)
return prevproduct;
prevproduct=multiply(a,n,nextproduct*a[i],i+1);
printf(" i=%d > %d\n",i,prevproduct*nextproduct);
return prevproduct*a[i];
}
int main()
{
int a[]={2,4,1,3,5};
multiply(a,5,1,0);
return 0;
}
Here's a slightly functional example, using C#:
Func<long>[] backwards = new Func<long>[input.Length];
Func<long>[] forwards = new Func<long>[input.Length];
for (int i = 0; i < input.Length; ++i)
{
var localIndex = i;
backwards[i] = () => (localIndex > 0 ? backwards[localIndex - 1]() : 1) * input[localIndex];
forwards[i] = () => (localIndex < input.Length - 1 ? forwards[localIndex + 1]() : 1) * input[localIndex];
}
var output = new long[input.Length];
for (int i = 0; i < input.Length; ++i)
{
if (0 == i)
{
output[i] = forwards[i + 1]();
}
else if (input.Length - 1 == i)
{
output[i] = backwards[i - 1]();
}
else
{
output[i] = forwards[i + 1]() * backwards[i - 1]();
}
}
I'm not entirely certain that this is O(n), due to the semi-recursion of the created Funcs, but my tests seem to indicate that it's O(n) in time.
To be complete here is the code in Scala:
val list1 = List(1, 2, 3, 4, 5)
for (elem <- list1) println(list1.filter(_ != elem) reduceLeft(_*_))
This will print out the following:
120
60
40
30
24
The program will filter out the current elem (_ != elem); and multiply the new list with reduceLeft method. I think this will be O(n) if you use scala view or Iterator for lazy eval.
// This is the recursive solution in Java // Called as following from main product(a,1,0);
public static double product(double[] a, double fwdprod, int index){
double revprod = 1;
if (index < a.length){
revprod = product2(a, fwdprod*a[index], index+1);
double cur = a[index];
a[index] = fwdprod * revprod;
revprod *= cur;
}
return revprod;
}
A neat solution with O(n) runtime:
For each element calculate the product of all the elements that occur before that and it store in an array "pre". For each element calculate the product of all the elements that occur after that element and store it in an array "post" Create a final array "result", for an element i, result[i] = pre[i-1]*post[i+1];
Here is another simple concept which solves the problem in O(N)
.
int[] arr = new int[] {1, 2, 3, 4, 5};
int[] outArray = new int[arr.length];
for(int i=0;i<arr.length;i++){
int res=Arrays.stream(arr).reduce(1, (a, b) -> a * b);
outArray[i] = res/arr[i];
}
System.out.println(Arrays.toString(outArray));
Here is the ptyhon version
# This solution use O(n) time and O(n) space
def productExceptSelf(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
N = len(nums)
if N == 0: return
# Initialzie list of 1, size N
l_prods, r_prods = [1]*N, [1]*N
for i in range(1, N):
l_prods[i] = l_prods[i-1] * nums[i-1]
for i in reversed(range(N-1)):
r_prods[i] = r_prods[i+1] * nums[i+1]
result = [x*y for x,y in zip(l_prods,r_prods)]
return result
# This solution use O(n) time and O(1) space
def productExceptSelfSpaceOptimized(self, nums):
"""
:type nums: List[int]
:rtype: List[int]
"""
N = len(nums)
if N == 0: return
# Initialzie list of 1, size N
result = [1]*N
for i in range(1, N):
result[i] = result[i-1] * nums[i-1]
r_prod = 1
for i in reversed(range(N)):
result[i] *= r_prod
r_prod *= nums[i]
return result
I'm use to C#:
public int[] ProductExceptSelf(int[] nums)
{
int[] returnArray = new int[nums.Length];
List<int> auxList = new List<int>();
int multTotal = 0;
// If no zeros are contained in the array you only have to calculate it once
if(!nums.Contains(0))
{
multTotal = nums.ToList().Aggregate((a, b) => a * b);
for (int i = 0; i < nums.Length; i++)
{
returnArray[i] = multTotal / nums[i];
}
}
else
{
for (int i = 0; i < nums.Length; i++)
{
auxList = nums.ToList();
auxList.RemoveAt(i);
if (!auxList.Contains(0))
{
returnArray[i] = auxList.Aggregate((a, b) => a * b);
}
else
{
returnArray[i] = 0;
}
}
}
return returnArray;
}
Here is simple Scala version in Linear O(n) time:
def getProductEff(in:Seq[Int]):Seq[Int] = { //create a list which has product of every element to the left of this element val fromLeft = in.foldLeft((1, Seq.empty[Int]))((ac, i) => (i * ac._1, ac._2 :+ ac._1))._2 //create a list which has product of every element to the right of this element, which is the same as the previous step but in reverse val fromRight = in.reverse.foldLeft((1,Seq.empty[Int]))((ac,i) => (i * ac._1,ac._2 :+ ac._1))._2.reverse //merge the two list by product at index in.indices.map(i => fromLeft(i) * fromRight(i)) }
This works because essentially the answer is an array which has product of all elements to the left and to the right.
import java.util.Arrays;
public class Pratik
{
public static void main(String[] args)
{
int[] array = {2, 3, 4, 5, 6}; // OUTPUT: 360 240 180 144 120
int[] products = new int[array.length];
arrayProduct(array, products);
System.out.println(Arrays.toString(products));
}
public static void arrayProduct(int array[], int products[])
{
double sum = 0, EPSILON = 1e-9;
for(int i = 0; i < array.length; i++)
sum += Math.log(array[i]);
for(int i = 0; i < array.length; i++)
products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
}
}
OUTPUT:
[360, 240, 180, 144, 120]
Time complexity : O(n) Space complexity: O(1)
Success story sharing
v_i=0
then the only non zero entry in the result is the ith element. However I suspect that adding a pass to detect and count the zero elements would detract from the clarity of the solution, and probably not make any real performance gain in the majority of cases..