ChatGPT解决这个技术问题 Extra ChatGPT

计算2个GPS坐标之间的距离

如何计算两个 GPS 坐标之间的距离(使用纬度和经度)?

该算法称为 Great Circle distance
@GregHewgill,那篇文章的第一句话说“这篇文章是关于球体上的最短距离”。即显然不适用于 GPS 坐标。

F
Federico klez Culloca

Calculate the distance between two coordinates by latitude and longitude,包括 Javascript 实现。

西部和南部的位置是负面的。记住分钟和秒都在 60 以内,所以 S31 30' 是 -31.50 度。

不要忘记将度数转换为弧度。很多语言都有这个功能。或者它是一个简单的计算:radians = degrees * PI / 180

function degreesToRadians(degrees) {
  return degrees * Math.PI / 180;
}

function distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
  var earthRadiusKm = 6371;

  var dLat = degreesToRadians(lat2-lat1);
  var dLon = degreesToRadians(lon2-lon1);

  lat1 = degreesToRadians(lat1);
  lat2 = degreesToRadians(lat2);

  var a = Math.sin(dLat/2) * Math.sin(dLat/2) +
          Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2); 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  return earthRadiusKm * c;
}

以下是一些使用示例:

distanceInKmBetweenEarthCoordinates(0,0,0,0)  // Distance between same 
                                              // points should be 0
0

distanceInKmBetweenEarthCoordinates(51.5, 0, 38.8, -77.1) // From London
                                                          // to Arlington
5918.185064088764

如果不明显,toRad() 方法是对 Number 原型的自定义,例如:Number.prototype.toRad = function() { return this * (Math.PI / 180); }; 。或者,如下所示,您可以将 (Math.PI/2) 替换为 0.0174532925199433(...无论您认为必要的精度)以提高性能。
如果有人,特别是那些不寻找行尾注释的人,正在盯着这个公式并寻找距离单位,单位是公里。 :)
@VinneyKelly 小错字,但替换(Math.PI/180)不是(Math.PI/2),感谢大家的帮助
@ChristianKRider 看看第一行。想想 R 在数学中的通常含义,然后查找相关的、与地球相关的数量,看看数字是否匹配。
对于英制单位(英里),您可以将 earthRadiusKm 更改为 var earthRadiusMiles = 3959;,仅供参考。
J
Jon Winstanley

用谷歌寻找haversine;这是我的解决方案:

#include <math.h>
#include "haversine.h"

#define d2r (M_PI / 180.0)

//calculate haversine distance for linear distance
double haversine_km(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 6367 * c;

    return d;
}

double haversine_mi(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * d2r;
    double dlat = (lat2 - lat1) * d2r;
    double a = pow(sin(dlat/2.0), 2) + cos(lat1*d2r) * cos(lat2*d2r) * pow(sin(dlong/2.0), 2);
    double c = 2 * atan2(sqrt(a), sqrt(1-a));
    double d = 3956 * c; 

    return d;
}

您可以将 (M_PI / 180.0) 替换为 0.0174532925199433 以获得更好的性能。
在性能方面:一个人只能计算一次 sin(dlat/2.0),将其存储在变量 a1 中,而不是 pow(,2),使用 a1*a1 更好。另一个 pow(,2) 也是如此。
是的,或者只是使用 60 年代后的编译器。
没有必要“优化”(M_PI / 180.0)到一个没有上下文就没有人理解的常数。编译器会为您计算这些固定项!
@TõnuSamuel 非常感谢您的评论。对此,我真的非常感激。启用优化 (-O) 的编译器可以预先计算常量的操作,从而使手动折叠变得毫无用处,这是有道理的。有时间我会测试一下。
M
Mike Chamberlain

Haversine 的 C# 版本

double _eQuatorialEarthRadius = 6378.1370D;
double _d2r = (Math.PI / 180D);

private int HaversineInM(double lat1, double long1, double lat2, double long2)
{
    return (int)(1000D * HaversineInKM(lat1, long1, lat2, long2));
}

private double HaversineInKM(double lat1, double long1, double lat2, double long2)
{
    double dlong = (long2 - long1) * _d2r;
    double dlat = (lat2 - lat1) * _d2r;
    double a = Math.Pow(Math.Sin(dlat / 2D), 2D) + Math.Cos(lat1 * _d2r) * Math.Cos(lat2 * _d2r) * Math.Pow(Math.Sin(dlong / 2D), 2D);
    double c = 2D * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1D - a));
    double d = _eQuatorialEarthRadius * c;

    return d;
}

Here's a .NET Fiddle of this,因此您可以使用自己的纬度/经度对其进行测试。


我还添加了一个 checky .NET fiddle,这样人们就可以轻松地对其进行测试。
.Net 框架有一个内置方法 GeoCoordinate.GetDistanceTo。必须引用程序集 System.Device。 MSDN 文章 msdn.microsoft.com/en-us/library/…
u
user247702

Java版本的Haversine算法基于Roman Makarov对该线程的回复

public class HaversineAlgorithm {

    static final double _eQuatorialEarthRadius = 6378.1370D;
    static final double _d2r = (Math.PI / 180D);

    public static int HaversineInM(double lat1, double long1, double lat2, double long2) {
        return (int) (1000D * HaversineInKM(lat1, long1, lat2, long2));
    }

    public static double HaversineInKM(double lat1, double long1, double lat2, double long2) {
        double dlong = (long2 - long1) * _d2r;
        double dlat = (lat2 - lat1) * _d2r;
        double a = Math.pow(Math.sin(dlat / 2D), 2D) + Math.cos(lat1 * _d2r) * Math.cos(lat2 * _d2r)
                * Math.pow(Math.sin(dlong / 2D), 2D);
        double c = 2D * Math.atan2(Math.sqrt(a), Math.sqrt(1D - a));
        double d = _eQuatorialEarthRadius * c;

        return d;
    }

}

@Radu 确保您正确使用它,并且在将它们传递给任何方法时不交换纬度/日志位置。
使用这个公式,我得到了一个相当接近的答案。我使用这个网站基于准确度:movable-type.co.uk/scripts/latlong.html 给了我 0.07149 公里,而你的公式给了我 0.07156,准确度约为 99%
M
Marko Tintor

这在 SQL Server 2008 中使用地理类型很容易做到。

SELECT geography::Point(lat1, lon1, 4326).STDistance(geography::Point(lat2, lon2, 4326))
-- computes distance in meters using eliptical model, accurate to the mm

4326 是 WGS84 椭球地球模型的 SRID


P
PaulMcG

这是我使用的 Python 中的 Haversine 函数:

from math import pi,sqrt,sin,cos,atan2

def haversine(pos1, pos2):
    lat1 = float(pos1['lat'])
    long1 = float(pos1['long'])
    lat2 = float(pos2['lat'])
    long2 = float(pos2['long'])

    degree_to_rad = float(pi / 180.0)

    d_lat = (lat2 - lat1) * degree_to_rad
    d_long = (long2 - long1) * degree_to_rad

    a = pow(sin(d_lat / 2), 2) + cos(lat1 * degree_to_rad) * cos(lat2 * degree_to_rad) * pow(sin(d_long / 2), 2)
    c = 2 * atan2(sqrt(a), sqrt(1 - a))
    km = 6367 * c
    mi = 3956 * c

    return {"km":km, "miles":mi}

数学模块包含一个名为弧度的函数,它将度数转换为弧度。 from math import radians
S
Salvador Dali

我需要为我的项目计算很多点之间的距离,所以我继续尝试优化代码,我在这里找到了。平均而言,在不同的浏览器中,我的新实现的运行速度比最受好评的答案快 2 倍。

function distance(lat1, lon1, lat2, lon2) {
  var p = 0.017453292519943295;    // Math.PI / 180
  var c = Math.cos;
  var a = 0.5 - c((lat2 - lat1) * p)/2 + 
          c(lat1 * p) * c(lat2 * p) * 
          (1 - c((lon2 - lon1) * p))/2;

  return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}

您可以使用我的 jsPerf 并查看 results here

最近我需要在python中做同样的事情,所以这是一个python实现:

from math import cos, asin, sqrt
def distance(lat1, lon1, lat2, lon2):
    p = 0.017453292519943295
    a = 0.5 - cos((lat2 - lat1) * p)/2 + cos(lat1 * p) * cos(lat2 * p) * (1 - cos((lon2 - lon1) * p)) / 2
    return 12742 * asin(sqrt(a))

为了完整起见: wiki 上的 Haversine


T
Tomerikoo

这取决于您需要它有多准确。如果您需要精确定位,最好查看使用椭球体而不是球体的算法,例如 Vincenty's algorithm,它可以精确到毫米。


请将所有信息放在您的答案中,而不是链接到外部资源
@NicoHaase Fair 电话,如果可能是临时性的 - 是在 12 年前,当时这是一个稍微不同的地方。
M
Mike Chamberlain

这是在 C# 中(以弧度表示的纬度和经度):

double CalculateGreatCircleDistance(double lat1, double long1, double lat2, double long2, double radius)
{
    return radius * Math.Acos(
        Math.Sin(lat1) * Math.Sin(lat2)
        + Math.Cos(lat1) * Math.Cos(lat2) * Math.Cos(long2 - long1));
}

如果您的纬度和经度以度为单位,则除以 180/PI 以转换为弧度。


这是“球余弦定律”计算,它是计算大圆距离的最不准确和最容易出错的方法。
q
quape

PHP版本:

(如果您的坐标已经以弧度表示,请删除所有 deg2rad()。)

$R = 6371; // km
$dLat = deg2rad($lat2-$lat1);
$dLon = deg2rad($lon2-$lon1);
$lat1 = deg2rad($lat1);
$lat2 = deg2rad($lat2);

$a = sin($dLat/2) * sin($dLat/2) +
     sin($dLon/2) * sin($dLon/2) * cos($lat1) * cos($lat2); 

$c = 2 * atan2(sqrt($a), sqrt(1-$a)); 
$d = $R * $c;

请将 lat1 和 lat2 更改为 $lat1 和 $lat2。
B
Bo Persson

一个 T-SQL 函数,我用它来按中心的距离选择记录

Create Function  [dbo].[DistanceInMiles] 
 (  @fromLatitude float ,
    @fromLongitude float ,
    @toLatitude float, 
    @toLongitude float
  )
   returns float
AS 
BEGIN
declare @distance float

select @distance = cast((3963 * ACOS(round(COS(RADIANS(90-@fromLatitude))*COS(RADIANS(90-@toLatitude))+ 
SIN(RADIANS(90-@fromLatitude))*SIN(RADIANS(90-@toLatitude))*COS(RADIANS(@fromLongitude-@toLongitude)),15)) 
)as float) 
  return  round(@distance,1)
END

这是“球余弦定律”计算,它是计算大圆距离的最不准确和最容易出错的方法。
T
Tod Samay

一、关于“面包屑”方法

不同纬度的地球半径不同。在 Haversine 算法中必须考虑到这一点。考虑改变方位,将直线变成拱形(更长) 考虑速度变化会将拱形变成螺旋形(比拱形更长或更短) 高度变化会将平面螺旋形变成 3D 螺旋形(又长了)。这对于丘陵地区非常重要。

下面看C中的函数,它考虑了#1和#2:

double   calcDistanceByHaversine(double rLat1, double rLon1, double rHeading1,
       double rLat2, double rLon2, double rHeading2){
  double rDLatRad = 0.0;
  double rDLonRad = 0.0;
  double rLat1Rad = 0.0;
  double rLat2Rad = 0.0;
  double a = 0.0;
  double c = 0.0;
  double rResult = 0.0;
  double rEarthRadius = 0.0;
  double rDHeading = 0.0;
  double rDHeadingRad = 0.0;

  if ((rLat1 < -90.0) || (rLat1 > 90.0) || (rLat2 < -90.0) || (rLat2 > 90.0)
              || (rLon1 < -180.0) || (rLon1 > 180.0) || (rLon2 < -180.0)
              || (rLon2 > 180.0)) {
        return -1;
  };

  rDLatRad = (rLat2 - rLat1) * DEGREE_TO_RADIANS;
  rDLonRad = (rLon2 - rLon1) * DEGREE_TO_RADIANS;
  rLat1Rad = rLat1 * DEGREE_TO_RADIANS;
  rLat2Rad = rLat2 * DEGREE_TO_RADIANS;

  a = sin(rDLatRad / 2) * sin(rDLatRad / 2) + sin(rDLonRad / 2) * sin(
              rDLonRad / 2) * cos(rLat1Rad) * cos(rLat2Rad);

  if (a == 0.0) {
        return 0.0;
  }

  c = 2 * atan2(sqrt(a), sqrt(1 - a));
  rEarthRadius = 6378.1370 - (21.3847 * 90.0 / ((fabs(rLat1) + fabs(rLat2))
              / 2.0));
  rResult = rEarthRadius * c;

  // Chord to Arc Correction based on Heading changes. Important for routes with many turns and U-turns

  if ((rHeading1 >= 0.0) && (rHeading1 < 360.0) && (rHeading2 >= 0.0)
              && (rHeading2 < 360.0)) {
        rDHeading = fabs(rHeading1 - rHeading2);
        if (rDHeading > 180.0) {
              rDHeading -= 180.0;
        }
        rDHeadingRad = rDHeading * DEGREE_TO_RADIANS;
        if (rDHeading > 5.0) {
              rResult = rResult * (rDHeadingRad / (2.0 * sin(rDHeadingRad / 2)));
        } else {
              rResult = rResult / cos(rDHeadingRad);
        }
  }
  return rResult;
}

二、有一种更简单的方法可以提供很好的结果。

按平均速度。

Trip_distance = Trip_average_speed * Trip_time

由于 GPS 速度是由多普勒效应检测的,并且与 [Lon,Lat] 没有直接关系,因此如果不是主要的距离计算方法,它至少可以被视为次要(备份或校正)。


C
Chad

如果您需要更准确的内容,请使用 look at this

Vincenty 公式是大地测量学中用于计算球体表面上两点之间距离的两种相关迭代方法,由 Thaddeus Vincenty (1975a) 开发。它们基于地球图形是扁球体的假设,因此比假设球形地球的大圆距离等方法更准确。第一种(直接)方法计算一个点的位置,该点是与另一个点的给定距离和方位角(方向)。第二种(逆)方法计算两个给定点之间的地理距离和方位角。它们已广泛用于大地测量学,因为它们在地球椭球体上的精度在 0.5 毫米(0.020 英寸)以内。


C
Community

如果您使用的是 .NET,请不要重蹈覆辙。请参阅System.Device.Location。在 another answer 的评论中感谢 fnx。

using System.Device.Location;

double lat1 = 45.421527862548828D;
double long1 = -75.697189331054688D;
double lat2 = 53.64135D;
double long2 = -113.59273D;

GeoCoordinate geo1 = new GeoCoordinate(lat1, long1);
GeoCoordinate geo2 = new GeoCoordinate(lat2, long2);

double distance = geo1.GetDistanceTo(geo2);

M
Maxs

这是适用于 MySQL 和 Kilometers 的“Henry Vilinskiy”版本:

CREATE FUNCTION `CalculateDistanceInKm`(
  fromLatitude float,
  fromLongitude float,
  toLatitude float, 
  toLongitude float
) RETURNS float
BEGIN
  declare distance float;

  select 
    6367 * ACOS(
            round(
              COS(RADIANS(90-fromLatitude)) *
                COS(RADIANS(90-toLatitude)) +
                SIN(RADIANS(90-fromLatitude)) *
                SIN(RADIANS(90-toLatitude)) *
                COS(RADIANS(fromLongitude-toLongitude))
              ,15)
            )
    into distance;

  return  round(distance,3);
END;

MySQLSomething is wrong in your syntax near '' on line 8 // declare distance float;
这是“球面余弦定律”计算,它是计算大圆距离的最不准确和最容易出错的方法
S
Sai Li

这是答案中的 Swift 实现

func degreesToRadians(degrees: Double) -> Double {
    return degrees * Double.pi / 180
}

func distanceInKmBetweenEarthCoordinates(lat1: Double, lon1: Double, lat2: Double, lon2: Double) -> Double {

    let earthRadiusKm: Double = 6371

    let dLat = degreesToRadians(degrees: lat2 - lat1)
    let dLon = degreesToRadians(degrees: lon2 - lon1)

    let lat1 = degreesToRadians(degrees: lat1)
    let lat2 = degreesToRadians(degrees: lat2)

    let a = sin(dLat/2) * sin(dLat/2) +
    sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2)
    let c = 2 * atan2(sqrt(a), sqrt(1 - a))
    return earthRadiusKm * c
}

N
Norman Ramsey

此 Lua 代码改编自 Wikipedia 和 Robert Lipe 的 GPSbabel 工具中的内容:

local EARTH_RAD = 6378137.0 
  -- earth's radius in meters (official geoid datum, not 20,000km / pi)

local radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
  -- earth's radius in miles

local multipliers = {
  radians = 1, miles = radmiles, mi = radmiles, feet = radmiles * 5280,
  meters = EARTH_RAD, m = EARTH_RAD, km = EARTH_RAD / 1000, 
  degrees = 360 / (2 * math.pi), min = 60 * 360 / (2 * math.pi)
}

function gcdist(pt1, pt2, units) -- return distance in radians or given units
  --- this formula works best for points close together or antipodal
  --- rounding error strikes when distance is one-quarter Earth's circumference
  --- (ref: wikipedia Great-circle distance)
  if not pt1.radians then pt1 = rad(pt1) end
  if not pt2.radians then pt2 = rad(pt2) end
  local sdlat = sin((pt1.lat - pt2.lat) / 2.0);
  local sdlon = sin((pt1.lon - pt2.lon) / 2.0);
  local res = sqrt(sdlat * sdlat + cos(pt1.lat) * cos(pt2.lat) * sdlon * sdlon);
  res = res > 1 and 1 or res < -1 and -1 or res
  res = 2 * asin(res);
  if units then return res * assert(multipliers[units])
  else return res
  end
end

E
Elanchezhian Babu P
    private double deg2rad(double deg)
    {
        return (deg * Math.PI / 180.0);
    }

    private double rad2deg(double rad)
    {
        return (rad / Math.PI * 180.0);
    }

    private double GetDistance(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Distance in Kilo Meter
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = Math.Abs(Math.Round(rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344 * 1000, 0));
        return (dist);
    }

    private double GetDirection(double lat1, double lon1, double lat2, double lon2)
    {
        //code for Direction in Degrees
        double dlat = deg2rad(lat1) - deg2rad(lat2);
        double dlon = deg2rad(lon1) - deg2rad(lon2);
        double y = Math.Sin(dlon) * Math.Cos(lat2);
        double x = Math.Cos(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) - Math.Sin(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(dlon);
        double direct = Math.Round(rad2deg(Math.Atan2(y, x)), 0);
        if (direct < 0)
            direct = direct + 360;
        return (direct);
    }

    private double GetSpeed(double lat1, double lon1, double lat2, double lon2, DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Round(TimeDifference.TotalSeconds, 0);
        double theta = lon1 - lon2;
        double dist = Math.Sin(deg2rad(lat1)) * Math.Sin(deg2rad(lat2)) + Math.Cos(deg2rad(lat1)) * Math.Cos(deg2rad(lat2)) * Math.Cos(deg2rad(theta));
        dist = rad2deg(Math.Acos(dist)) * 60 * 1.1515 * 1.609344;
        double Speed = Math.Abs(Math.Round((dist / Math.Abs(TimeDifferenceInSeconds)) * 60 * 60, 0));
        return (Speed);
    }

    private double GetDuration(DateTime CurTime, DateTime PrevTime)
    {
        //code for speed in Kilo Meter/Hour
        TimeSpan TimeDifference = CurTime.Subtract(PrevTime);
        double TimeDifferenceInSeconds = Math.Abs(Math.Round(TimeDifference.TotalSeconds, 0));
        return (TimeDifferenceInSeconds);
    }

我认为您的函数 GetDistance 以米为单位返回值
这个对吗? GetDirection() 不使用“dlat”。
P
Peter Perháč

我选择了最佳答案并将其用于 Scala 程序

import java.lang.Math.{atan2, cos, sin, sqrt}

def latLonDistance(lat1: Double, lon1: Double)(lat2: Double, lon2: Double): Double = {
    val earthRadiusKm = 6371
    val dLat = (lat2 - lat1).toRadians
    val dLon = (lon2 - lon1).toRadians
    val latRad1 = lat1.toRadians
    val latRad2 = lat2.toRadians

    val a = sin(dLat / 2) * sin(dLat / 2) + sin(dLon / 2) * sin(dLon / 2) * cos(latRad1) * cos(latRad2)
    val c = 2 * atan2(sqrt(a), sqrt(1 - a))
    earthRadiusKm * c
}

我对函数进行了柯里化,以便能够轻松地生成两个位置中的一个固定的函数,并且只需要一对纬度/经度来产生距离。


C
Csaba Toth

这是一个 Kotlin 变体:

import kotlin.math.*

class HaversineAlgorithm {

    companion object {
        private const val MEAN_EARTH_RADIUS = 6371.008
        private const val D2R = Math.PI / 180.0
    }

    private fun haversineInKm(lat1: Double, lon1: Double, lat2: Double, lon2: Double): Double {
        val lonDiff = (lon2 - lon1) * D2R
        val latDiff = (lat2 - lat1) * D2R
        val latSin = sin(latDiff / 2.0)
        val lonSin = sin(lonDiff / 2.0)
        val a = latSin * latSin + (cos(lat1 * D2R) * cos(lat2 * D2R) * lonSin * lonSin)
        val c = 2.0 * atan2(sqrt(a), sqrt(1.0 - a))
        return MEAN_EARTH_RADIUS * c
    }
}

你为什么用赤道半径而不是地球平均半径?
@user13044086 好问题。这是因为我是从 Paulo Miguel Almeida 的 Java 版本中派生出来的。看起来 C# 版本也在使用这个距离。这里的其他版本有 6371,但你必须意识到所有这些算法可能无法完美地处理地球的大地水准面形状。随意修改它并使用 6371。如果你告诉我这会导致更精确的值,我会改变我的答案。
6371.008 是常用的,因为它可以最大限度地减少公式的相对误差,如第 movable-type.co.uk/scripts/latlong.html#ellipsoid 页注释中所述
user13044086 感谢您的链接,我不久前根据该链接编辑了我的答案
G
Guge

我猜你想要它沿着地球的曲率。你的两个点和地球的中心在一个平面上。地球的中心是那个平面上一个圆的中心,两个点(大致)在那个圆的周长上。从中,您可以通过找出从一个点到另一个点的角度来计算距离。

如果这些点的高度不同,或者如果你需要考虑到地球不是一个完美的球体,那就有点困难了。


R
Random Dev

您可以在 fssnip 上的 F# 中找到这个实现(有一些很好的解释)

以下是重要部分:


let GreatCircleDistance<[&ltMeasure>] 'u> (R : float<'u>) (p1 : Location) (p2 : Location) =
    let degToRad (x : float&ltdeg>) = System.Math.PI * x / 180.0&ltdeg/rad>

    let sq x = x * x
    // take the sin of the half and square the result
    let sinSqHf (a : float&ltrad>) = (System.Math.Sin >> sq) (a / 2.0&ltrad>)
    let cos (a : float&ltdeg>) = System.Math.Cos (degToRad a / 1.0&ltrad>)

    let dLat = (p2.Latitude - p1.Latitude) |> degToRad
    let dLon = (p2.Longitude - p1.Longitude) |> degToRad

    let a = sinSqHf dLat + cos p1.Latitude * cos p2.Latitude * sinSqHf dLon
    let c = 2.0 * System.Math.Atan2(System.Math.Sqrt(a), System.Math.Sqrt(1.0-a))

    R * c

T
TheLukeMcCarthy

我需要在 PowerShell 中实现它,希望它可以帮助其他人。关于此方法的一些注意事项

不要分割任何线,否则计算会出错 以公里为单位计算 删除 $distance 计算中的 * 1000 更改 $earthsRadius = 3963.19059 并删除 $distance 计算中的 * 1000 以计算以英里为单位的距离我正在使用 Haversine,因为其他帖子指出 Vincenty 的公式要准确得多 Function MetresDistanceBetweenTwoGPSCoordinates($latitude1, $longitude1, $latitude2, $longitude2) { $Rad = ([math]::PI / 180); $earthsRadius = 6378.1370 # 地球半径(公里) $dLat = ($latitude2 - $latitude1) * $Rad $dLon = ($longitude2 - $longitude1) * $Rad $latitude1 = $latitude1 * $Rad $latitude2 = $latitude2 * $拉德 $a = [math]::Sin($dLat / 2) * [math]::Sin($dLat / 2) + [math]::Sin($dLon / 2) * [math]::Sin( $dLon / 2) * [math]::Cos($latitude1) * [math]::Cos($latitude2) $c = 2 * [math]::ATan2([math]::Sqrt($a), [math]::Sqrt(1-$a)) $distance = [math]::Round($earthsRadius * $c * 1000, 0) #乘以1000得到米 返回$distance }


P
Przemek

斯卡拉版本

  def deg2rad(deg: Double) = deg * Math.PI / 180.0

  def rad2deg(rad: Double) = rad / Math.PI * 180.0

  def getDistanceMeters(lat1: Double, lon1: Double, lat2: Double, lon2: Double) = {
    val theta = lon1 - lon2
    val dist = Math.sin(deg2rad(lat1)) * Math.sin(deg2rad(lat2)) + Math.cos(deg2rad(lat1)) *
      Math.cos(deg2rad(lat2)) * Math.cos(deg2rad(theta))
    Math.abs(
      Math.round(
        rad2deg(Math.acos(dist)) * 60 * 1.1515 * 1.609344 * 1000)
    )
  }

m
mroach

这是我在 Elixir 中的实现

defmodule Geo do
  @earth_radius_km 6371
  @earth_radius_sm 3958.748
  @earth_radius_nm 3440.065
  @feet_per_sm 5280

  @d2r :math.pi / 180

  def deg_to_rad(deg), do: deg * @d2r

  def great_circle_distance(p1, p2, :km), do: haversine(p1, p2) * @earth_radius_km
  def great_circle_distance(p1, p2, :sm), do: haversine(p1, p2) * @earth_radius_sm
  def great_circle_distance(p1, p2, :nm), do: haversine(p1, p2) * @earth_radius_nm
  def great_circle_distance(p1, p2, :m), do: great_circle_distance(p1, p2, :km) * 1000
  def great_circle_distance(p1, p2, :ft), do: great_circle_distance(p1, p2, :sm) * @feet_per_sm

  @doc """
  Calculate the [Haversine](https://en.wikipedia.org/wiki/Haversine_formula)
  distance between two coordinates. Result is in radians. This result can be
  multiplied by the sphere's radius in any unit to get the distance in that unit.
  For example, multiple the result of this function by the Earth's radius in
  kilometres and you get the distance between the two given points in kilometres.
  """
  def haversine({lat1, lon1}, {lat2, lon2}) do
    dlat = deg_to_rad(lat2 - lat1)
    dlon = deg_to_rad(lon2 - lon1)

    radlat1 = deg_to_rad(lat1)
    radlat2 = deg_to_rad(lat2)

    a = :math.pow(:math.sin(dlat / 2), 2) +
        :math.pow(:math.sin(dlon / 2), 2) *
        :math.cos(radlat1) * :math.cos(radlat2)

    2 * :math.atan2(:math.sqrt(a), :math.sqrt(1 - a))
  end
end

D
Dean Mark

在 Python 中,您可以使用 geopy 库使用 WGS84 椭球计算测地线距离:

from geopy.distance import geodesic
newport_ri = (41.49008, -71.312796)
cleveland_oh = (41.499498, -81.695391)
print(geodesic(newport_ri, cleveland_oh).km)

a
abd3llatif

飞镖版

半正弦算法。

import 'dart:math';

class GeoUtils {

  static double _degreesToRadians(degrees) {
    return degrees * pi / 180;
  }

  static double distanceInKmBetweenEarthCoordinates(lat1, lon1, lat2, lon2) {
    var earthRadiusKm = 6371;

    var dLat = _degreesToRadians(lat2-lat1);
    var dLon = _degreesToRadians(lon2-lon1);

    lat1 = _degreesToRadians(lat1);
    lat2 = _degreesToRadians(lat2);

    var a = sin(dLat/2) * sin(dLat/2) +
        sin(dLon/2) * sin(dLon/2) * cos(lat1) * cos(lat2);
    var c = 2 * atan2(sqrt(a), sqrt(1-a));
    return earthRadiusKm * c;
  }
}

s
shghm

我认为 R 中的算法版本仍然缺失:

gpsdistance<-function(lat1,lon1,lat2,lon2){

# internal function to change deg to rad

degreesToRadians<- function (degrees) {
return (degrees * pi / 180)
}

R<-6371e3  #radius of Earth in meters

phi1<-degreesToRadians(lat1) # latitude 1
phi2<-degreesToRadians(lat2) # latitude 2
lambda1<-degreesToRadians(lon1) # longitude 1
lambda2<-degreesToRadians(lon2) # longitude 2

delta_phi<-phi1-phi2 # latitude-distance
delta_lambda<-lambda1-lambda2 # longitude-distance

a<-sin(delta_phi/2)*sin(delta_phi/2)+
cos(phi1)*cos(phi2)*sin(delta_lambda/2)*
sin(delta_lambda/2)

cc<-2*atan2(sqrt(a),sqrt(1-a))

distance<- R * cc

return(distance)  # in meters
}

L
Lakpriya Senevirathna

对于java

public static double degreesToRadians(double degrees) {
    return degrees * Math.PI / 180;
}

public static double distanceInKmBetweenEarthCoordinates(Location location1, Location location2) {
    double earthRadiusKm = 6371;

    double dLat = degreesToRadians(location2.getLatitude()-location1.getLatitude());
    double dLon = degreesToRadians(location2.getLongitude()-location1.getLongitude());

    double lat1 = degreesToRadians(location1.getLatitude());
    double lat2 = degreesToRadians(location2.getLatitude());

    double a = Math.sin(dLat/2) * Math.sin(dLat/2) +
            Math.sin(dLon/2) * Math.sin(dLon/2) * Math.cos(lat1) * Math.cos(lat2);
    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
    return earthRadiusKm * c;
}

b
bLight

对于任何搜索 Delphi/Pascal 版本的人:

function GreatCircleDistance(const Lat1, Long1, Lat2, Long2: Double): Double;
var
  Lat1Rad, Long1Rad, Lat2Rad, Long2Rad: Double;
const
  EARTH_RADIUS_KM = 6378;
begin
  Lat1Rad  := DegToRad(Lat1);
  Long1Rad := DegToRad(Long1);
  Lat2Rad  := DegToRad(Lat2);
  Long2Rad := DegToRad(Long2);
  Result   := EARTH_RADIUS_KM * ArcCos(Cos(Lat1Rad) * Cos(Lat2Rad) * Cos(Long1Rad - Long2Rad) + Sin(Lat1Rad) * Sin(Lat2Rad));
end;

我不相信这段代码,我最初发现它是由 Gary William 在公共论坛上发布的。