I need to emulate a do-while loop in a Python program. Unfortunately, the following straightforward code does not work:
list_of_ints = [ 1, 2, 3 ]
iterator = list_of_ints.__iter__()
element = None
while True:
if element:
print element
try:
element = iterator.next()
except StopIteration:
break
print "done"
Instead of "1,2,3,done", it prints the following output:
[stdout:]1
[stdout:]2
[stdout:]3
None['Traceback (most recent call last):
', ' File "test_python.py", line 8, in <module>
s = i.next()
', 'StopIteration
']
What can I do in order to catch the 'stop iteration' exception and break a while loop properly?
An example of why such a thing may be needed is shown below as pseudocode.
State machine:
s = ""
while True :
if state is STATE_CODE :
if "//" in s :
tokens.add( TOKEN_COMMENT, s.split( "//" )[1] )
state = STATE_COMMENT
else :
tokens.add( TOKEN_CODE, s )
if state is STATE_COMMENT :
if "//" in s :
tokens.append( TOKEN_COMMENT, s.split( "//" )[1] )
else
state = STATE_CODE
# Re-evaluate same line
continue
try :
s = i.next()
except StopIteration :
break
s=i.next()
rather than None and possibly do some initial work rather than just make your first pass through the loop useless though.
I am not sure what you are trying to do. You can implement a do-while loop like this:
while True:
stuff()
if fail_condition:
break
Or:
stuff()
while not fail_condition:
stuff()
What are you doing trying to use a do while loop to print the stuff in the list? Why not just use:
for i in l:
print i
print "done"
Update:
So do you have a list of lines? And you want to keep iterating through it? How about:
for s in l:
while True:
stuff()
# use a "break" instead of s = i.next()
Does that seem like something close to what you would want? With your code example, it would be:
for s in some_list:
while True:
if state is STATE_CODE:
if "//" in s:
tokens.add( TOKEN_COMMENT, s.split( "//" )[1] )
state = STATE_COMMENT
else :
tokens.add( TOKEN_CODE, s )
if state is STATE_COMMENT:
if "//" in s:
tokens.append( TOKEN_COMMENT, s.split( "//" )[1] )
break # get next s
else:
state = STATE_CODE
# re-evaluate same line
# continues automatically
Here's a very simple way to emulate a do-while loop:
condition = True
while condition:
# loop body here
condition = test_loop_condition()
# end of loop
The key features of a do-while loop are that the loop body always executes at least once, and that the condition is evaluated at the bottom of the loop body. The control structure show here accomplishes both of these with no need for exceptions or break statements. It does introduce one extra Boolean variable.
break
. Specifically, if there is logic needed AFTER test_loop_condition()
, that should not be executed once we are done, it has to be wrapped in if condition:
. BTW, condition
is vague. More descriptive: more
or notDone
.
break
in loops and when I encounter it in code that I maintain I find that the loop, most often, could have been written without it. The presented solution is, IMO, the clearest way to represent a do while construct in python.
has_no_errors
or end_reached
(in which case the loop would start while not end_reached
My code below might be a useful implementation, highlighting the main difference between do-while vs while as I understand it.
So in this one case, you always go through the loop at least once.
first_pass = True
while first_pass or condition:
first_pass = False
do_stuff()
while condition or first_pass:
. Then condition
is always evaluated first and overall first_pass
is evaluated only twice (first and last iteration). Don't forget to initialize condition
before the loop to whatever you want.
do {
stuff()
} while (condition())
->
while True:
stuff()
if not condition():
break
You can do a function:
def do_while(stuff, condition):
while condition(stuff()):
pass
But 1) It's ugly. 2) Condition should be a function with one parameter, supposed to be filled by stuff (it's the only reason not to use the classic while loop.)
while True: stuff(); if not condition(): break
is a very good idea. Thank you!
Exception will break the loop, so you might as well handle it outside the loop.
try:
while True:
if s:
print s
s = i.next()
except StopIteration:
pass
I guess that the problem with your code is that behaviour of break
inside except
is not defined. Generally break
goes only one level up, so e.g. break
inside try
goes directly to finally
(if it exists) an out of the try
, but not out of the loop.
Related PEP: http://www.python.org/dev/peps/pep-3136
Related question: Breaking out of nested loops
Here is a crazier solution of a different pattern -- using coroutines. The code is still very similar, but with one important difference; there are no exit conditions at all! The coroutine (chain of coroutines really) just stops when you stop feeding it with data.
def coroutine(func):
"""Coroutine decorator
Coroutines must be started, advanced to their first "yield" point,
and this decorator does this automatically.
"""
def startcr(*ar, **kw):
cr = func(*ar, **kw)
cr.next()
return cr
return startcr
@coroutine
def collector(storage):
"""Act as "sink" and collect all sent in @storage"""
while True:
storage.append((yield))
@coroutine
def state_machine(sink):
""" .send() new parts to be tokenized by the state machine,
tokens are passed on to @sink
"""
s = ""
state = STATE_CODE
while True:
if state is STATE_CODE :
if "//" in s :
sink.send((TOKEN_COMMENT, s.split( "//" )[1] ))
state = STATE_COMMENT
else :
sink.send(( TOKEN_CODE, s ))
if state is STATE_COMMENT :
if "//" in s :
sink.send(( TOKEN_COMMENT, s.split( "//" )[1] ))
else
state = STATE_CODE
# re-evaluate same line
continue
s = (yield)
tokens = []
sm = state_machine(collector(tokens))
for piece in i:
sm.send(piece)
The code above collects all tokens as tuples in tokens
and I assume there is no difference between .append()
and .add()
in the original code.
The way I've done this is as follows...
condition = True
while condition:
do_stuff()
condition = (<something that evaluates to True or False>)
This seems to me to be the simplistic solution, I'm surprised I haven't seen it here already. This can obviously also be inverted to
while not condition:
etc.
I believe that this do-while simulation on python has a syntax format closest to the do-while structure format present in C and Java.
do = True
while do:
[...]
do = <condition>
do = <condition>
?
do = <condition>
does not truely emulate a do ... while
loop
do ... while
loop runs the first iteration unconditionally, always, and only evaluates the condition before the next iterations.
Python 3.8 has the answer.
It's called assignment expressions. from the documentation:
# Loop over fixed length blocks
while (block := f.read(256)) != '':
process(block)
do
body while
condition first executes the body and then evaluates the condition. your construct first checks the condition. it's a while ... do loop.
functools.partial()
and iter()
for this: for block in iter(partial, file.read, 256), ""): process(block)
.
for a do - while loop containing try statements
loop = True
while loop:
generic_stuff()
try:
questionable_stuff()
# to break from successful completion
# loop = False
except:
optional_stuff()
# to break from unsuccessful completion -
# the case referenced in the OP's question
loop = False
finally:
more_generic_stuff()
alternatively, when there's no need for the 'finally' clause
while True:
generic_stuff()
try:
questionable_stuff()
# to break from successful completion
# break
except:
optional_stuff()
# to break from unsuccessful completion -
# the case referenced in the OP's question
break
while condition is True:
stuff()
else:
stuff()
stuff
to be a function or for the code body to be repeated.
while condition:
because is True
is implied.
condition
depends on some inner variable of stuff()
, because that variable is not defined at that moment.
Quick hack:
def dowhile(func = None, condition = None):
if not func or not condition:
return
else:
func()
while condition():
func()
Use like so:
>>> x = 10
>>> def f():
... global x
... x = x - 1
>>> def c():
global x
return x > 0
>>> dowhile(f, c)
>>> print x
0
Why don't you just do
for s in l :
print s
print "done"
?
While loop:
while condition:
print("hello")
Do while loop:
while True:
print("hello")
if not condition:
break
Also you can use any true boolean value as condition:
while 1:
print("hello")
if not condition:
break
Another variant:
check = 1
while check:
print("hello")
check = condition
If you're in a scenario where you are looping while a resource is unavaliable or something similar that throws an exception, you could use something like
import time
while True:
try:
f = open('some/path', 'r')
except IOError:
print('File could not be read. Retrying in 5 seconds')
time.sleep(5)
else:
break
You wondered:
What can I do in order to catch the 'stop iteration' exception and break a while loop properly?
You could do it as shown below and which also makes use of the assignment expressions feature (aka “the walrus operator”) that was introduced in Python 3.8:
list_of_ints = [1, 2, 3]
iterator = iter(list_of_ints)
try:
while (element := next(iterator)):
print(element)
except StopIteration:
print("done")
Another possibility (that would work from Python 2.6 to 3.x) would be to provide a default
argument to the built-in next()
function to avoid the StopIteration
exception:
SENTINEL = object() # Unique object.
list_of_ints = [1, 2, 3]
iterator = iter(list_of_ints)
while True:
element = next(iterator, SENTINEL)
if element is SENTINEL:
break
print(element)
print("done")
See if this helps :
Set a flag inside the exception handler and check it before working on the s.
flagBreak = false;
while True :
if flagBreak : break
if s :
print s
try :
s = i.next()
except StopIteration :
flagBreak = true
print "done"
while not flagBreak:
and removing the if (flagBreak) : break
.
flag
--I am unable to infer what a True value or False value mean. Instead, use done
or endOfIteration
. The code turns into while not done: ...
.
For me a typical while loop will be something like this:
xBool = True
# A counter to force a condition (eg. yCount = some integer value)
while xBool:
# set up the condition (eg. if yCount > 0):
(Do something)
yCount = yCount - 1
else:
# (condition is not met, set xBool False)
xBool = False
I could include a for..loop within the while loop as well, if situation so warrants, for looping through another set of condition.
while True:
try:
# stuff
stuff_1()
if some_cond:
continue
if other_cond:
break
stuff_2()
finally:
# condition
if not condition:
break
[x] condition checked only after running stuff
[x] stuff is not a function call
[x] condition is not a function call
[x] stuff can contain flow control
[ ] Avoid checking condition if stuff called break (can be done with another boolean)
The built-in iter function does specifically that:
for x in iter(YOUR_FN, TERM_VAL):
...
E.g. (tested in Py2 and 3):
class Easy:
X = 0
@classmethod
def com(cls):
cls.X += 1
return cls.X
for x in iter(Easy.com, 10):
print(">>>", x)
If you want to give a condition to terminate instead of a value, you always can set an equality, and require that equality to be True
.
Success story sharing