ChatGPT解决这个技术问题 Extra ChatGPT

Stack, Static, and Heap in C++

I've searched, but I've not understood very well these three concepts. When do I have to use dynamic allocation (in the heap) and what's its real advantage? What are the problems of static and stack? Could I write an entire application without allocating variables in the heap?

I heard that others languages incorporate a "garbage collector" so you don't have to worry about memory. What does the garbage collector do?

What could you do manipulating the memory by yourself that you couldn't do using this garbage collector?

Once someone said to me that with this declaration:

int * asafe=new int;

I have a "pointer to a pointer". What does it mean? It is different of:

asafe=new int;

?

There was a very similar question asked sometime ago: What and where are the stack and heap? There are a few really good answers to that question that should shed some light on yours.

C
Community

A similar question was asked, but it didn't ask about statics.

Summary of what static, heap, and stack memory are:

A static variable is basically a global variable, even if you cannot access it globally. Usually there is an address for it that is in the executable itself. There is only one copy for the entire program. No matter how many times you go into a function call (or class) (and in how many threads!) the variable is referring to the same memory location.

The heap is a bunch of memory that can be used dynamically. If you want 4kb for an object then the dynamic allocator will look through its list of free space in the heap, pick out a 4kb chunk, and give it to you. Generally, the dynamic memory allocator (malloc, new, et c.) starts at the end of memory and works backwards.

Explaining how a stack grows and shrinks is a bit outside the scope of this answer, but suffice to say you always add and remove from the end only. Stacks usually start high and grow down to lower addresses. You run out of memory when the stack meets the dynamic allocator somewhere in the middle (but refer to physical versus virtual memory and fragmentation). Multiple threads will require multiple stacks (the process generally reserves a minimum size for the stack).

When you would want to use each one:

Statics/globals are useful for memory that you know you will always need and you know that you don't ever want to deallocate. (By the way, embedded environments may be thought of as having only static memory... the stack and heap are part of a known address space shared by a third memory type: the program code. Programs will often do dynamic allocation out of their static memory when they need things like linked lists. But regardless, the static memory itself (the buffer) is not itself "allocated", but rather other objects are allocated out of the memory held by the buffer for this purpose. You can do this in non-embedded as well, and console games will frequently eschew the built in dynamic memory mechanisms in favor of tightly controlling the allocation process by using buffers of preset sizes for all allocations.)

Stack variables are useful for when you know that as long as the function is in scope (on the stack somewhere), you will want the variables to remain. Stacks are nice for variables that you need for the code where they are located, but which isn't needed outside that code. They are also really nice for when you are accessing a resource, like a file, and want the resource to automatically go away when you leave that code.

Heap allocations (dynamically allocated memory) is useful when you want to be more flexible than the above. Frequently, a function gets called to respond to an event (the user clicks the "create box" button). The proper response may require allocating a new object (a new Box object) that should stick around long after the function is exited, so it can't be on the stack. But you don't know how many boxes you would want at the start of the program, so it can't be a static.

Garbage Collection

I've heard a lot lately about how great Garbage Collectors are, so maybe a bit of a dissenting voice would be helpful.

Garbage Collection is a wonderful mechanism for when performance is not a huge issue. I hear GCs are getting better and more sophisticated, but the fact is, you may be forced to accept a performance penalty (depending upon use case). And if you're lazy, it still may not work properly. At the best of times, Garbage Collectors realize that your memory goes away when it realizes that there are no more references to it (see reference counting). But, if you have an object that refers to itself (possibly by referring to another object which refers back), then reference counting alone will not indicate that the memory can be deleted. In this case, the GC needs to look at the entire reference soup and figure out if there are any islands that are only referred to by themselves. Offhand, I'd guess that to be an O(n^2) operation, but whatever it is, it can get bad if you are at all concerned with performance. (Edit: Martin B points out that it is O(n) for reasonably efficient algorithms. That is still O(n) too much if you are concerned with performance and can deallocate in constant time without garbage collection.)

Personally, when I hear people say that C++ doesn't have garbage collection, my mind tags that as a feature of C++, but I'm probably in the minority. Probably the hardest thing for people to learn about programming in C and C++ are pointers and how to correctly handle their dynamic memory allocations. Some other languages, like Python, would be horrible without GC, so I think it comes down to what you want out of a language. If you want dependable performance, then C++ without garbage collection is the only thing this side of Fortran that I can think of. If you want ease of use and training wheels (to save you from crashing without requiring that you learn "proper" memory management), pick something with a GC. Even if you know how to manage memory well, it will save you time which you can spend optimizing other code. There really isn't much of a performance penalty anymore, but if you really need dependable performance (and the ability to know exactly what is going on, when, under the covers) then I'd stick with C++. There is a reason that every major game engine that I've ever heard of is in C++ (if not C or assembly). Python, et al are fine for scripting, but not the main game engine.


It's not really relevant to the original question (or to much at all, actually), but you got the locations of the stack and heap backwards. Typically, the stack grows down and the heap grows up (although a heap doesn't actually "grow", so this is a huge oversimplification) ...
i don't think that this question is similar or even duplicate of the other question. this one is specifically about C++ and what he meant is almost certainly the three storage durations existing in C++. You can have a dynamic object allocated on static memory just fine, for example, overload op new.
Often garbage collection is nowadays better than manual freeing memory because it happens when there is little work to do, as opposed to freeing memory that can happen right when the performance could be used otherwise.
@gs: Interesting point. Of course, you could lazily deallocate with non-GC, so it comes down, again, to ease of use versus the ability to micromanage. If the ease of use lets you have time to optimize elsewhere, then it was a good perofrmance gain. I'll tweak.
Just a small comment -- garbage collection doesn't have O(n^2) complexity (that would, indeed, be disastrous for performance). The time taken for one garbage collection cycle is proportional to the size of the heap -- see hpl.hp.com/personal/Hans_Boehm/gc/complexity.html.
b
bolov

The following is of course all not quite precise. Take it with a grain of salt when you read it :)

Well, the three things you refer to are automatic, static and dynamic storage duration, which has something to do with how long objects live and when they begin life.

Automatic storage duration

You use automatic storage duration for short lived and small data, that is needed only locally within some block:

if(some condition) {
    int a[3]; // array a has automatic storage duration
    fill_it(a);
    print_it(a);
}

The lifetime ends as soon as we exit the block, and it starts as soon as the object is defined. They are the most simple kind of storage duration, and are way faster than in particular dynamic storage duration.

Static storage duration

You use static storage duration for free variables, which might be accessed by any code all times, if their scope allows such usage (namespace scope), and for local variables that need extend their lifetime across exit of their scope (local scope), and for member variables that need to be shared by all objects of their class (classs scope). Their lifetime depends on the scope they are in. They can have namespace scope and local scope and class scope. What is true about both of them is, once their life begins, lifetime ends at the end of the program. Here are two examples:

// static storage duration. in global namespace scope
string globalA; 
int main() {
    foo();
    foo();
}

void foo() {
    // static storage duration. in local scope
    static string localA;
    localA += "ab"
    cout << localA;
}

The program prints ababab, because localA is not destroyed upon exit of its block. You can say that objects that have local scope begin lifetime when control reaches their definition. For localA, it happens when the function's body is entered. For objects in namespace scope, lifetime begins at program startup. The same is true for static objects of class scope:

class A {
    static string classScopeA;
};

string A::classScopeA;

A a, b; &a.classScopeA == &b.classScopeA == &A::classScopeA;

As you see, classScopeA is not bound to particular objects of its class, but to the class itself. The address of all three names above is the same, and all denote the same object. There are special rule about when and how static objects are initialized, but let's not concern about that now. That's meant by the term static initialization order fiasco.

Dynamic storage duration

The last storage duration is dynamic. You use it if you want to have objects live on another isle, and you want to put pointers around that reference them. You also use them if your objects are big, and if you want to create arrays of size only known at runtime. Because of this flexibility, objects having dynamic storage duration are complicated and slow to manage. Objects having that dynamic duration begin lifetime when an appropriate new operator invocation happens:

int main() {
    // the object that s points to has dynamic storage 
    // duration
    string *s = new string;
    // pass a pointer pointing to the object around. 
    // the object itself isn't touched
    foo(s);
    delete s;
}

void foo(string *s) {
    cout << s->size();
}

Its lifetime ends only when you call delete for them. If you forget that, those objects never end lifetime. And class objects that define a user declared constructor won't have their destructors called. Objects having dynamic storage duration requires manual handling of their lifetime and associated memory resource. Libraries exist to ease use of them. Explicit garbage collection for particular objects can be established by using a smart pointer:

int main() {
    shared_ptr<string> s(new string);
    foo(s);
}

void foo(shared_ptr<string> s) {
    cout << s->size();
}

You don't have to care about calling delete: The shared ptr does it for you, if the last pointer that references the object goes out of scope. The shared ptr itself has automatic storage duration. So its lifetime is automatically managed, allowing it to check whether it should delete the pointed to dynamic object in its destructor. For shared_ptr reference, see boost documents: http://www.boost.org/doc/libs/1_37_0/libs/smart_ptr/shared_ptr.htm


p
peterchen

It's been said elaborately, just as "the short answer":

static variable (class) lifetime = program runtime (1) visibility = determined by access modifiers (private/protected/public)

static variable (global scope) lifetime = program runtime (1) visibility = the compilation unit it is instantiated in (2)

heap variable lifetime = defined by you (new to delete) visibility = defined by you (whatever you assign the pointer to)

stack variable visibility = from declaration until scope is exited lifetime = from declaration until declaring scope is exited

(1) more exactly: from initialization until deinitialization of the compilation unit (i.e. C / C++ file). Order of initialization of compilation units is not defined by the standard.

(2) Beware: if you instantiate a static variable in a header, each compilation unit gets its own copy.


C
Chris Smith

I'm sure one of the pedants will come up with a better answer shortly, but the main difference is speed and size.

Stack

Dramatically faster to allocate. It is done in O(1) since it is allocated when setting up the stack frame so it is essentially free. The drawback is that if you run out of stack space you are boned. You can adjust the stack size, but IIRC you have ~2MB to play with. Also, as soon as you exit the function everything on the stack is cleared. So it can be problematic to refer to it later. (Pointers to stack allocated objects leads to bugs.)

Heap

Dramatically slower to allocate. But you have GB to play with, and point to.

Garbage Collector

The garbage collector is some code that runs in the background and frees memory. When you allocate memory on the heap it is very easy to forget to free it, which is known as a memory leak. Over time, the memory your application consumes grows and grows until it crashes. Having a garbage collector periodically free the memory you no longer need helps eliminate this class of bugs. Of course this comes at a price, as the garbage collector slows things down.


C
ChrisW

What are the problems of static and stack?

The problem with "static" allocation is that the allocation is made at compile-time: you can't use it to allocate some variable number of data, the number of which isn't known until run-time.

The problem with allocating on the "stack" is that the allocation is destroyed as soon as the subroutine which does the allocation returns.

I could write an entire application without allocate variables in the heap?

Perhaps but not a non-trivial, normal, big application (but so-called "embedded" programs might be written without the heap, using a subset of C++).

What garbage collector does ?

It keeps watching your data ("mark and sweep") to detect when your application is no longer referencing it. This is convenient for the application, because the application doesn't need to deallocate the data ... but the garbage collector might be computationally expensive.

Garbage collectors aren't a usual feature of C++ programming.

What could you do manipulating the memory by yourself that you couldn't do using this garbage collector?

Learn the C++ mechanisms for deterministic memory deallocation:

'static': never deallocated

'stack': as soon as the variable "goes out of scope"

'heap': when the pointer is deleted (explicitly deleted by the application, or implicitly deleted within some-or-other subroutine)


R
Rob Elsner

Stack memory allocation (function variables, local variables) can be problematic when your stack is too "deep" and you overflow the memory available to stack allocations. The heap is for objects that need to be accessed from multiple threads or throughout the program lifecycle. You can write an entire program without using the heap.

You can leak memory quite easily without a garbage collector, but you can also dictate when objects and memory is freed. I have run in to issues with Java when it runs the GC and I have a real time process, because the GC is an exclusive thread (nothing else can run). So if performance is critical and you can guarantee there are no leaked objects, not using a GC is very helpful. Otherwise it just makes you hate life when your application consumes memory and you have to track down the source of a leak.


k
kal

What if your program does not know upfront how much memory to allocate (hence you cannot use stack variables). Say linked lists, the lists can grow without knowing upfront what is its size. So allocating on a heap makes sense for a linked list when you are not aware of how many elements would be inserted into it.


f
frediano

An advantage of GC in some situations is an annoyance in others; reliance on GC encourages not thinking much about it. In theory, waits until 'idle' period or until it absolutely must, when it will steal bandwidth and cause response latency in your app.

But you don't have to 'not think about it.' Just as with everything else in multithreaded apps, when you can yield, you can yield. So for example, in .Net, it is possible to request a GC; by doing this, instead of less frequent longer running GC, you can have more frequent shorter running GC, and spread out the latency associated with this overhead.

But this defeats the primary attraction of GC which appears to be "encouraged to not have to think much about it because it is auto-mat-ic."

If you were first exposed to programming before GC became prevalent and were comfortable with malloc/free and new/delete, then it might even be the case that you find GC a little annoying and/or are distrustful(as one might be distrustful of 'optimization,' which has had a checkered history.) Many apps tolerate random latency. But for apps that don't, where random latency is less acceptable, a common reaction is to eschew GC environments and move in the direction of purely unmanaged code (or god forbid, a long dying art, assembly language.)

I had a summer student here a while back, an intern, smart kid, who was weaned on GC; he was so adament about the superiorty of GC that even when programming in unmanaged C/C++ he refused to follow the malloc/free new/delete model because, quote, "you shouldn't have to do this in a modern programming language." And you know? For tiny, short running apps, you can indeed get away with that, but not for long running performant apps.


r
raj

Stack is a memory allocated by the compiler, when ever we compiles the program, in default compiler allocates some memory from OS ( we can change the settings from compiler settings in your IDE) and OS is the one which give you the memory, its depends on many available memory on the system and many other things, and coming to stack memory is allocate when we declare a variable they copy(ref as formals) those variables are pushed on to stack they follow some naming conventions by default its CDECL in Visual studios ex: infix notation: c=a+b; the stack pushing is done right to left PUSHING, b to stack, operator, a to stack and result of those i,e c to stack. In pre fix notation: =+cab Here all the variables are pushed to stack 1st (right to left)and then the operation are made. This memory allocated by compiler is fixed. So lets assume 1MB of memory is allocated to our application, lets say variables used 700kb of memory(all the local variables are pushed to stack unless they are dynamically allocated) so remaining 324kb memory is allocated to heap. And this stack has less life time, when the scope of the function ends these stacks gets cleared.