ChatGPT解决这个技术问题 Extra ChatGPT

How to convert a factor to integer\numeric without loss of information?

When I convert a factor to a numeric or integer, I get the underlying level codes, not the values as numbers.

f <- factor(sample(runif(5), 20, replace = TRUE))
##  [1] 0.0248644019011408 0.0248644019011408 0.179684827337041 
##  [4] 0.0284090070053935 0.363644931698218  0.363644931698218 
##  [7] 0.179684827337041  0.249704354675487  0.249704354675487 
## [10] 0.0248644019011408 0.249704354675487  0.0284090070053935
## [13] 0.179684827337041  0.0248644019011408 0.179684827337041 
## [16] 0.363644931698218  0.249704354675487  0.363644931698218 
## [19] 0.179684827337041  0.0284090070053935
## 5 Levels: 0.0248644019011408 0.0284090070053935 ... 0.363644931698218

as.numeric(f)
##  [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2

as.integer(f)
##  [1] 1 1 3 2 5 5 3 4 4 1 4 2 3 1 3 5 4 5 3 2

I have to resort to paste to get the real values:

as.numeric(paste(f))
##  [1] 0.02486440 0.02486440 0.17968483 0.02840901 0.36364493 0.36364493
##  [7] 0.17968483 0.24970435 0.24970435 0.02486440 0.24970435 0.02840901
## [13] 0.17968483 0.02486440 0.17968483 0.36364493 0.24970435 0.36364493
## [19] 0.17968483 0.02840901

Is there a better way to convert a factor to numeric?

The levels of a factor are stored as character data type anyway (attributes(f)), so I don't think there is anything wrong with as.numeric(paste(f)). Perhaps it would be better to think why (in the specific context) you are getting a factor in the first place, and try to stop that. E.g., is the dec argument in read.table set correctly?
If you use a dataframe you can use convert from hablar. df %>% convert(num(column)). Or if you have a factor vector you can use as_reliable_num(factor_vector)
Thank good for this question. This is SO MUCH frustrating to see numbers get transformed into other numbers pretty much randomly.

J
Jaap

See the Warning section of ?factor:

In particular, as.numeric applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor f to approximately its original numeric values, as.numeric(levels(f))[f] is recommended and slightly more efficient than as.numeric(as.character(f)).

The FAQ on R has similar advice.

Why is as.numeric(levels(f))[f] more efficent than as.numeric(as.character(f))?

as.numeric(as.character(f)) is effectively as.numeric(levels(f)[f]), so you are performing the conversion to numeric on length(x) values, rather than on nlevels(x) values. The speed difference will be most apparent for long vectors with few levels. If the values are mostly unique, there won't be much difference in speed. However you do the conversion, this operation is unlikely to be the bottleneck in your code, so don't worry too much about it.

Some timings

library(microbenchmark)
microbenchmark(
  as.numeric(levels(f))[f],
  as.numeric(levels(f)[f]),
  as.numeric(as.character(f)),
  paste0(x),
  paste(x),
  times = 1e5
)
## Unit: microseconds
##                         expr   min    lq      mean median     uq      max neval
##     as.numeric(levels(f))[f] 3.982 5.120  6.088624  5.405  5.974 1981.418 1e+05
##     as.numeric(levels(f)[f]) 5.973 7.111  8.352032  7.396  8.250 4256.380 1e+05
##  as.numeric(as.character(f)) 6.827 8.249  9.628264  8.534  9.671 1983.694 1e+05
##                    paste0(x) 7.964 9.387 11.026351  9.956 10.810 2911.257 1e+05
##                     paste(x) 7.965 9.387 11.127308  9.956 11.093 2419.458 1e+05

For timings see this answer: stackoverflow.com/questions/6979625/…
Many thanks for your solution. Can I ask why the as.numeric(levels(f))[f] is more precise and faster? Thanks.
@Sam as.character(f) requires a "primitive lookup" to find the function as.character.factor(), which is defined as as.numeric(levels(f))[f].
when apply as.numeric(levels(f))[f] OR as.numeric(as.character(f)), I have an warning msg: Warning message:NAs introduced by coercion. Do you know where the problem could be? thank you !
@user08041991 I have the same issue as maycca. I suspect this is from gradual changes in R over time (this answer was posted in 2010), and this answer is now outdated
J
Jealie

R has a number of (undocumented) convenience functions for converting factors:

as.character.factor

as.data.frame.factor

as.Date.factor

as.list.factor

as.vector.factor

...

But annoyingly, there is nothing to handle the factor -> numeric conversion. As an extension of Joshua Ulrich's answer, I would suggest to overcome this omission with the definition of your own idiomatic function:

as.double.factor <- function(x) {as.numeric(levels(x))[x]}

that you can store at the beginning of your script, or even better in your .Rprofile file.


There's nothing to handle the factor-to-integer (or numeric) conversion because it's expected that as.integer(factor) returns the underlying integer codes (as shown in the examples section of ?factor). It's probably okay to define this function in your global environment, but you might cause problems if you actually register it as an S3 method.
That's a good point and I agree: a complete redefinition of the factor->numeric conversion is likely to mess a lot of things. I found myself writing the cumbersome factor->numeric conversion a lot before realizing that it is in fact a shortcoming of R: some convenience function should be available... Calling it as.numeric.factor makes sense to me, but YMMV.
If you find yourself doing that a lot, then you should do something upstream to avoid it all-together.
as.numeric.factor returns NA?
@rui-barradas comment = as a historical anomaly, R has two types for floating point vectors: numeric and double. According to the documentation, it is better to write code for the double type, thus as.double.factor seems like a more proper name. Link to documentation: stat.ethz.ch/R-manual/R-devel/library/base/html/numeric.html . Thanks @rui-barradas !
A
Axeman

Note: this particular answer is not for converting numeric-valued factors to numerics, it is for converting categorical factors to their corresponding level numbers.

Every answer in this post failed to generate results for me , NAs were getting generated.

y2<-factor(c("A","B","C","D","A")); 
as.numeric(levels(y2))[y2] 
[1] NA NA NA NA NA Warning message: NAs introduced by coercion

What worked for me is this -

as.integer(y2)
# [1] 1 2 3 4 1

Are you sure you had a factor? Look at this example.y<-factor(c("5","15","20","2")); unclass(y) %>% as.numeric This returns 4,1,3,2, not 5,15,20,2. This seems like incorrect information.
OK, well that's not the question that was asked above. In this question the factor levels are all "numeric". In your case , as.numeric(y) should have worked just fine, no need for the unclass(). But again, that's not what this question was about. This answer isn't appropriate here.
Well, I really hope it helps someone who was in a hurry like me and read just the title !
If you have characters representing the integers as factors, this is the one I would recommend. this is the only one that worked for me.
This is the answer so many of us are after and the first hit in Google. I can't find a similar question.
M
Mehrad Mahmoudian

The most easiest way would be to use unfactor function from package varhandle which can accept a factor vector or even a dataframe:

unfactor(your_factor_variable)

This example can be a quick start:

x <- rep(c("a", "b", "c"), 20)
y <- rep(c(1, 1, 0), 20)

class(x)  # -> "character"
class(y)  # -> "numeric"

x <- factor(x)
y <- factor(y)

class(x)  # -> "factor"
class(y)  # -> "factor"

library(varhandle)
x <- unfactor(x)
y <- unfactor(y)

class(x)  # -> "character"
class(y)  # -> "numeric"

You can also use it on a dataframe. For example the iris dataset:

sapply(iris, class)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species "numeric" "numeric" "numeric" "numeric" "factor"

# load the package
library("varhandle")
# pass the iris to unfactor
tmp_iris <- unfactor(iris)
# check the classes of the columns
sapply(tmp_iris, class)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species "numeric" "numeric" "numeric" "numeric" "character"

# check if the last column is correctly converted
tmp_iris$Species

[1] "setosa" "setosa" "setosa" "setosa" "setosa" [6] "setosa" "setosa" "setosa" "setosa" "setosa" [11] "setosa" "setosa" "setosa" "setosa" "setosa" [16] "setosa" "setosa" "setosa" "setosa" "setosa" [21] "setosa" "setosa" "setosa" "setosa" "setosa" [26] "setosa" "setosa" "setosa" "setosa" "setosa" [31] "setosa" "setosa" "setosa" "setosa" "setosa" [36] "setosa" "setosa" "setosa" "setosa" "setosa" [41] "setosa" "setosa" "setosa" "setosa" "setosa" [46] "setosa" "setosa" "setosa" "setosa" "setosa" [51] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [56] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [61] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [66] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [71] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [76] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [81] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [86] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [91] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [96] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" [101] "virginica" "virginica" "virginica" "virginica" "virginica" [106] "virginica" "virginica" "virginica" "virginica" "virginica" [111] "virginica" "virginica" "virginica" "virginica" "virginica" [116] "virginica" "virginica" "virginica" "virginica" "virginica" [121] "virginica" "virginica" "virginica" "virginica" "virginica" [126] "virginica" "virginica" "virginica" "virginica" "virginica" [131] "virginica" "virginica" "virginica" "virginica" "virginica" [136] "virginica" "virginica" "virginica" "virginica" "virginica" [141] "virginica" "virginica" "virginica" "virginica" "virginica" [146] "virginica" "virginica" "virginica" "virginica" "virginica"


The unfactor function converts to character data type first and then converts back to numeric. Type unfactor at the console and you can see it in the middle of the function. Therefore it doesn't really give a better solution than what the asker already had.
Having said that, the levels of a factor are of character type anyway, so nothing is lost by this approach.
@Selrac I've mentioned that this function is available in varhandle package, meaning you should load the package (library("varhandle")) first (as I mentioned in the first line of my answer!!)
I appreciate that your package probably has some other nice functions too, but installing a new package (and adding an external dependency to your code) isn't as nice or easy as typing as.character(as.numeric()).
@Gregor adding a light dependency does not harm usually and of course if you are looking for the most efficient way, writing the code your self might perform faster. but as you can also see in your comment this is not trivial since you also put the as.numeric() and as.character() in a wrong order ;) What your code chunk does is to turn the factor's level index into a character matrix, so what you will have at the and is a character vector that contains some numbers that has been once assigned to certain level of your factor. Functions in that package are there to prevent these confusions
d
djhurio

It is possible only in the case when the factor labels match the original values. I will explain it with an example.

Assume the data is vector x:

x <- c(20, 10, 30, 20, 10, 40, 10, 40)

Now I will create a factor with four labels:

f <- factor(x, levels = c(10, 20, 30, 40), labels = c("A", "B", "C", "D"))

1) x is with type double, f is with type integer. This is the first unavoidable loss of information. Factors are always stored as integers.

> typeof(x)
[1] "double"
> typeof(f)
[1] "integer"

2) It is not possible to revert back to the original values (10, 20, 30, 40) having only f available. We can see that f holds only integer values 1, 2, 3, 4 and two attributes - the list of labels ("A", "B", "C", "D") and the class attribute "factor". Nothing more.

> str(f)
 Factor w/ 4 levels "A","B","C","D": 2 1 3 2 1 4 1 4
> attributes(f)
$levels
[1] "A" "B" "C" "D"

$class
[1] "factor"

To revert back to the original values we have to know the values of levels used in creating the factor. In this case c(10, 20, 30, 40). If we know the original levels (in correct order), we can revert back to the original values.

> orig_levels <- c(10, 20, 30, 40)
> x1 <- orig_levels[f]
> all.equal(x, x1)
[1] TRUE

And this will work only in case when labels have been defined for all possible values in the original data.

So if you will need the original values, you have to keep them. Otherwise there is a high chance it will not be possible to get back to them only from a factor.


d
davsjob

You can use hablar::convert if you have a data frame. The syntax is easy:

Sample df

library(hablar)
library(dplyr)

df <- dplyr::tibble(a = as.factor(c("7", "3")),
                    b = as.factor(c("1.5", "6.3")))

Solution

df %>% 
  convert(num(a, b))

gives you:

# A tibble: 2 x 2
      a     b
  <dbl> <dbl>
1    7.  1.50
2    3.  6.30

Or if you want one column to be integer and one numeric:

df %>% 
  convert(int(a),
          num(b))

results in:

# A tibble: 2 x 2
      a     b
  <int> <dbl>
1     7  1.50
2     3  6.30

However, loading another package just for that single operation is not parcimonious
R
Robert Bray

strtoi() works if your factor levels are integers.


Nice simple solution, as fast as other solutions too.
J
Jerry T

late to the game, accidently, I found trimws() can convert factor(3:5) to c("3","4","5"). Then you can call as.numeric(). That is:

as.numeric(trimws(x_factor_var))

Is there a reason you would recommend using trimws over as.character as described in the accepted answer? It seems to me like unless you actually had whitespace you needed to remove, trimws is just going to do a bunch of unnecessary regular expression work to return the same result.
as.numeric(levels(f))[f] is might be a bit confusing and hard to remember for beginners. trimws does no harm.
R
Ritchie Sacramento

type.convert(f) on a factor whose levels are completely numeric is another base option.

Performance-wise it's about equivalent to as.numeric(as.character(f)) but not nearly as quick as as.numeric(levels(f))[f].

identical(type.convert(f), as.numeric(levels(f))[f])

[1] TRUE

That said, if the reason the vector was created as a factor in the first instance has not been addressed (i.e. it likely contained some characters that could not be coerced to numeric) then this approach won't work and it will return a factor.

levels(f)[1] <- "some character level"
identical(type.convert(f), as.numeric(levels(f))[f])

[1] FALSE

X
Xavier Prudent

From the many answers I could read, the only given way was to expand the number of variables according to the number of factors. If you have a variable "pet" with levels "dog" and "cat", you would end up with pet_dog and pet_cat.

In my case I wanted to stay with the same number of variables, by just translating the factor variable to a numeric one, in a way that can applied to many variables with many levels, so that cat=1 and dog=0 for instance.

Please find the corresponding solution below:

crime <- data.frame(city = c("SF", "SF", "NYC"),
                    year = c(1990, 2000, 1990),
                    crime = 1:3)

indx <- sapply(crime, is.factor)

crime[indx] <- lapply(crime[indx], function(x){ 
  listOri <- unique(x)
  listMod <- seq_along(listOri)
  res <- factor(x, levels=listOri)
  res <- as.numeric(res)
  return(res)
}
)

L
Life_Searching_Steps

Looks like the solution as.numeric(levels(f))[f] no longer work with R 4.0.

Alternative solution:

factor2number <- function(x){
    data.frame(levels(x), 1:length(levels(x)), row.names = 1)[x, 1]
}

factor2number(yourFactor)

?? On R 4.1, it does work.

关注公众号,不定期副业成功案例分享
Follow WeChat

Success story sharing

Want to stay one step ahead of the latest teleworks?

Subscribe Now