我有以下情节:
import matplotlib.pyplot as plt
fig2 = plt.figure()
ax3 = fig2.add_subplot(2,1,1)
ax4 = fig2.add_subplot(2,1,2)
ax4.loglog(x1, y1)
ax3.loglog(x2, y2)
ax3.set_ylabel('hello')
我希望能够不仅为两个子图中的每一个创建轴标签和标题,而且还为跨越两个子图的通用标签创建。例如,由于两个图具有相同的轴,因此我只需要一组 x 轴和 y 轴标签。不过,我确实希望每个子图都有不同的标题。
我尝试了一些东西,但没有一个能正常工作
您可以创建一个覆盖两个子图的大子图,然后设置公共标签。
import random
import matplotlib.pyplot as plt
x = range(1, 101)
y1 = [random.randint(1, 100) for _ in range(len(x))]
y2 = [random.randint(1, 100) for _ in range(len(x))]
fig = plt.figure()
ax = fig.add_subplot(111) # The big subplot
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
# Turn off axis lines and ticks of the big subplot
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.tick_params(labelcolor='w', top=False, bottom=False, left=False, right=False)
ax1.loglog(x, y1)
ax2.loglog(x, y2)
# Set common labels
ax.set_xlabel('common xlabel')
ax.set_ylabel('common ylabel')
ax1.set_title('ax1 title')
ax2.set_title('ax2 title')
plt.savefig('common_labels.png', dpi=300)
https://i.imgur.com/k0KSQ.png
另一种方法是使用 fig.text() 直接设置常用标签的位置。
import random
import matplotlib.pyplot as plt
x = range(1, 101)
y1 = [random.randint(1, 100) for _ in range(len(x))]
y2 = [random.randint(1, 100) for _ in range(len(x))]
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.loglog(x, y1)
ax2.loglog(x, y2)
# Set common labels
fig.text(0.5, 0.04, 'common xlabel', ha='center', va='center')
fig.text(0.06, 0.5, 'common ylabel', ha='center', va='center', rotation='vertical')
ax1.set_title('ax1 title')
ax2.set_title('ax2 title')
plt.savefig('common_labels_text.png', dpi=300)
https://i.imgur.com/GRyzs.png
使用 subplots
的一种简单方法:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(3, 4, sharex=True, sharey=True)
# add a big axes, hide frame
fig.add_subplot(111, frameon=False)
# hide tick and tick label of the big axes
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.grid(False)
plt.xlabel("common X")
plt.ylabel("common Y")
'off'
更改为 False
(我有 2.2.2)
for ax in axes: ax.plot(x, y)
似乎没有任何好处。
plt.setp()
将完成这项工作:
# plot something
fig, axs = plt.subplots(3,3, figsize=(15, 8), sharex=True, sharey=True)
for i, ax in enumerate(axs.flat):
ax.scatter(*np.random.normal(size=(2,200)))
ax.set_title(f'Title {i}')
# set labels
plt.setp(axs[-1, :], xlabel='x axis label')
plt.setp(axs[:, 0], ylabel='y axis label')
https://i.stack.imgur.com/PuExX.png
plt.setp(axs[-1, :], xlabel='x axis label')
仅修改标签文本(显然)。例如,如果您想自定义其文本参数,请执行 for 循环内的 ax.set_xlabel(None, size=12, weight='demibold', color='xkcd:lime green', labelpad=0.33)
。查看 matplotlib.text.Text 了解更多 **kwargs
。
matplotlib 3.4.0 中的新功能
现在有内置方法来设置公共轴标签:
supxlabel fig.supxlabel('通用 x 标签')
supylabel fig.supylabel('通用 y 标签')
要重现 OP 的 loglog
图(常见标签但标题不同):
x = np.arange(0.01, 10.01, 0.01)
y = 2 ** x
fig, (ax1, ax2) = plt.subplots(2, 1, constrained_layout=True)
ax1.loglog(y, x)
ax2.loglog(x, y)
# separate subplot titles
ax1.set_title('ax1.title')
ax2.set_title('ax2.title')
# common axis labels
fig.supxlabel('fig.supxlabel')
fig.supylabel('fig.supylabel')
https://i.stack.imgur.com/4EeGs.png
如果您不尝试导出矢量图形或者您已将 matplotlib 后端设置为忽略无色轴,那么 Wen-wei Liao 的回答很好;否则隐藏的轴将显示在导出的图形中。
我这里的回答 suplabel
类似于使用 fig.text
函数的 fig.suptitle
。因此,没有轴艺术家被创造出来并变得无色。但是,如果您尝试多次调用它,您将得到一个叠加的文本(就像 fig.suptitle
一样)。 Wen-wei Liao 的回答没有,因为如果 fig.add_subplot(111)
已经创建,它将返回相同的 Axes 对象。
创建绘图后也可以调用我的函数。
def suplabel(axis,label,label_prop=None,
labelpad=5,
ha='center',va='center'):
''' Add super ylabel or xlabel to the figure
Similar to matplotlib.suptitle
axis - string: "x" or "y"
label - string
label_prop - keyword dictionary for Text
labelpad - padding from the axis (default: 5)
ha - horizontal alignment (default: "center")
va - vertical alignment (default: "center")
'''
fig = pylab.gcf()
xmin = []
ymin = []
for ax in fig.axes:
xmin.append(ax.get_position().xmin)
ymin.append(ax.get_position().ymin)
xmin,ymin = min(xmin),min(ymin)
dpi = fig.dpi
if axis.lower() == "y":
rotation=90.
x = xmin-float(labelpad)/dpi
y = 0.5
elif axis.lower() == 'x':
rotation = 0.
x = 0.5
y = ymin - float(labelpad)/dpi
else:
raise Exception("Unexpected axis: x or y")
if label_prop is None:
label_prop = dict()
pylab.text(x,y,label,rotation=rotation,
transform=fig.transFigure,
ha=ha,va=va,
**label_prop)
这是一个解决方案,您可以设置其中一个图的 ylabel 并调整它的位置,使其垂直居中。这样可以避免 KYC 提到的问题。
import numpy as np
import matplotlib.pyplot as plt
def set_shared_ylabel(a, ylabel, labelpad = 0.01):
"""Set a y label shared by multiple axes
Parameters
----------
a: list of axes
ylabel: string
labelpad: float
Sets the padding between ticklabels and axis label"""
f = a[0].get_figure()
f.canvas.draw() #sets f.canvas.renderer needed below
# get the center position for all plots
top = a[0].get_position().y1
bottom = a[-1].get_position().y0
# get the coordinates of the left side of the tick labels
x0 = 1
for at in a:
at.set_ylabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.yaxis.get_ticklabel_extents(f.canvas.renderer)
bboxes = bboxes.inverse_transformed(f.transFigure)
xt = bboxes.x0
if xt < x0:
x0 = xt
tick_label_left = x0
# set position of label
a[-1].set_ylabel(ylabel)
a[-1].yaxis.set_label_coords(tick_label_left - labelpad,(bottom + top)/2, transform=f.transFigure)
length = 100
x = np.linspace(0,100, length)
y1 = np.random.random(length) * 1000
y2 = np.random.random(length)
f,a = plt.subplots(2, sharex=True, gridspec_kw={'hspace':0})
a[0].plot(x, y1)
a[1].plot(x, y2)
set_shared_ylabel(a, 'shared y label (a. u.)')
https://i.stack.imgur.com/d5iTr.png
# list loss and acc are your data
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.plot(iteration1, loss)
ax2.plot(iteration2, acc)
ax1.set_title('Training Loss')
ax2.set_title('Training Accuracy')
ax1.set_xlabel('Iteration')
ax1.set_ylabel('Loss')
ax2.set_xlabel('Iteration')
ax2.set_ylabel('Accuracy')
当 yticks 很大时,其他答案中的方法将无法正常工作。 ylabel 将与刻度重叠,在左侧被剪裁或在图形之外完全不可见/外部。
我已经修改了 Hagne 的答案,因此它适用于超过 1 列的子图,对于 xlabel 和 ylabel,它会移动图以保持 ylabel 在图中可见。
def set_shared_ylabel(a, xlabel, ylabel, labelpad = 0.01, figleftpad=0.05):
"""Set a y label shared by multiple axes
Parameters
----------
a: list of axes
ylabel: string
labelpad: float
Sets the padding between ticklabels and axis label"""
f = a[0,0].get_figure()
f.canvas.draw() #sets f.canvas.renderer needed below
# get the center position for all plots
top = a[0,0].get_position().y1
bottom = a[-1,-1].get_position().y0
# get the coordinates of the left side of the tick labels
x0 = 1
x1 = 1
for at_row in a:
at = at_row[0]
at.set_ylabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.yaxis.get_ticklabel_extents(f.canvas.renderer)
bboxes = bboxes.inverse_transformed(f.transFigure)
xt = bboxes.x0
if xt < x0:
x0 = xt
x1 = bboxes.x1
tick_label_left = x0
# shrink plot on left to prevent ylabel clipping
# (x1 - tick_label_left) is the x coordinate of right end of tick label,
# basically how much padding is needed to fit tick labels in the figure
# figleftpad is additional padding to fit the ylabel
plt.subplots_adjust(left=(x1 - tick_label_left) + figleftpad)
# set position of label,
# note that (figleftpad-labelpad) refers to the middle of the ylabel
a[-1,-1].set_ylabel(ylabel)
a[-1,-1].yaxis.set_label_coords(figleftpad-labelpad,(bottom + top)/2, transform=f.transFigure)
# set xlabel
y0 = 1
for at in axes[-1]:
at.set_xlabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.xaxis.get_ticklabel_extents(fig.canvas.renderer)
bboxes = bboxes.inverse_transformed(fig.transFigure)
yt = bboxes.y0
if yt < y0:
y0 = yt
tick_label_bottom = y0
axes[-1, -1].set_xlabel(xlabel)
axes[-1, -1].xaxis.set_label_coords((left + right) / 2, tick_label_bottom - labelpad, transform=fig.transFigure)
它适用于以下示例,而 Hagne 的答案不会绘制 ylabel(因为它在画布之外)并且 KYC 的 ylabel 与刻度标签重叠:
import matplotlib.pyplot as plt
import itertools
fig, axes = plt.subplots(3, 4, sharey='row', sharex=True, squeeze=False)
fig.subplots_adjust(hspace=.5)
for i, a in enumerate(itertools.chain(*axes)):
a.plot([0,4**i], [0,4**i])
a.set_title(i)
set_shared_ylabel(axes, 'common X', 'common Y')
plt.show()
或者,如果您对无色轴很好,我已经修改了 Julian Chen 的解决方案,因此 ylabel 不会与刻度标签重叠。
基本上,我们只需要设置无色的 ylim,使其与子图的最大 ylim 匹配,因此无色刻度标签为 ylabel 设置正确的位置。
同样,我们必须缩小绘图以防止剪裁。在这里,我已经硬编码了要缩小的数量,但是您可以四处寻找适合您的数字,或者像上面的方法一样计算它。
import matplotlib.pyplot as plt
import itertools
fig, axes = plt.subplots(3, 4, sharey='row', sharex=True, squeeze=False)
fig.subplots_adjust(hspace=.5)
miny = maxy = 0
for i, a in enumerate(itertools.chain(*axes)):
a.plot([0,4**i], [0,4**i])
a.set_title(i)
miny = min(miny, a.get_ylim()[0])
maxy = max(maxy, a.get_ylim()[1])
# add a big axes, hide frame
# set ylim to match the largest range of any subplot
ax_invis = fig.add_subplot(111, frameon=False)
ax_invis.set_ylim([miny, maxy])
# hide tick and tick label of the big axis
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.xlabel("common X")
plt.ylabel("common Y")
# shrink plot to prevent clipping
plt.subplots_adjust(left=0.15)
plt.show()
ax
必须在ax1
和ax2
之前创建,否则大情节将掩盖小情节。