ChatGPT解决这个技术问题 Extra ChatGPT

API pagination best practices

I'd love some some help handling a strange edge case with a paginated API I'm building.

Like many APIs, this one paginates large results. If you query /foos, you'll get 100 results (i.e. foo #1-100), and a link to /foos?page=2 which should return foo #101-200.

Unfortunately, if foo #10 is deleted from the data set before the API consumer makes the next query, /foos?page=2 will offset by 100 and return foos #102-201.

This is a problem for API consumers who are trying to pull all foos - they will not receive foo #101.

What's the best practice to handle this? We'd like to make it as lightweight as possible (i.e. avoiding handling sessions for API requests). Examples from other APIs would be greatly appreciated!

Just edited the question - problem is that foo #101 will not show up in the results & an API consumer trying to pull all foos will miss one.
I've been facing this same issue and looking for a solution. AFAIK, there is really no solid guaranteed mechanism to accomplish this, if each page executes a new query. The only solution I can think of is keep an active session, and keep the result set in the server side, and rather than executing new queries for each page, just grab the next cached set of records.
Take a look at how twitter achieve this dev.twitter.com/rest/public/timelines
@java_geek How is the since_id parameter updated ? In the twitter webpage it seems like they are making both requests with the same value for since_id . I wonder when will it get updated so that if newer tweets are added, they can be accounted for ?
@Petar The since_id parameter needs to be updated by the consumer of the API. If you see, the example there refers to clients processing tweets

r
ramblinjan

I'm not completely sure how your data is handled, so this may or may not work, but have you considered paginating with a timestamp field?

When you query /foos you get 100 results. Your API should then return something like this (assuming JSON, but if it needs XML the same principles can be followed):

{
    "data" : [
        {  data item 1 with all relevant fields    },
        {  data item 2   },
        ...
        {  data item 100 }
    ],
    "paging":  {
        "previous":  "http://api.example.com/foo?since=TIMESTAMP1" 
        "next":  "http://api.example.com/foo?since=TIMESTAMP2"
    }

}

Just a note, only using one timestamp relies on an implicit 'limit' in your results. You may want to add an explicit limit or also use an until property.

The timestamp can be dynamically determined using the last data item in the list. This seems to be more or less how Facebook paginates in its Graph API (scroll down to the bottom to see the pagination links in the format I gave above).

One problem may be if you add a data item, but based on your description it sounds like they would be added to the end (if not, let me know and I'll see if I can improve on this).


Timestamps are not guaranteed to be unique. That is, multiple resources can be created with the same timestamp. So this approach has the downside that the next page, might repeat the last (few?) entries from the current page.
@prmatta Actually, depending on database implementation a timestamp is guaranteed to be unique.
@jandjorgensen From your link: "The timestamp data type is just an incrementing number and does not preserve a date or a time. ... In SQL server 2008 and later, the timestamp type has been renamed to rowversion, presumably to better reflect its purpose and value." So there's no evidence here that timestamps (those that actually contain a time value) are unique.
@jandjorgensen I like your proposal, but wouldn't you need some kind of information in the resource links, so we know if we go previous or next? Sth like: "previous": "api.example.com/foo?before=TIMESTAMP" "next": "api.example.com/foo?since=TIMESTAMP2" We would also use our sequence ids instead of a timestamp. Do you see any problems with that?
Another similar option is to use the Link header field specified in RFC 5988 (section 5) : tools.ietf.org/html/rfc5988#page-6
k
kamilk

If you've got pagination you also sort the data by some key. Why not let API clients include the key of the last element of the previously returned collection in the URL and add a WHERE clause to your SQL query (or something equivalent, if you're not using SQL) so that it returns only those elements for which the key is greater than this value?


This is not a bad suggestion, however just because you sort by a value doesn't mean that it's a 'key', i.e. unique.
Exactly. For e.g. in my case, the sort field happens to be a date, and it is far from unique.
W
Will Hartung

You have several problems.

First, you have the example that you cited.

You also have a similar problem if rows are inserted, but in this case the user get duplicate data (arguably easier to manage than missing data, but still an issue).

If you are not snapshotting the original data set, then this is just a fact of life.

You can have the user make an explicit snapshot:

POST /createquery
filter.firstName=Bob&filter.lastName=Eubanks

Which results:

HTTP/1.1 301 Here's your query
Location: http://www.example.org/query/12345

Then you can page that all day long, since it's now static. This can be reasonably light weight, since you can just capture the actual document keys rather than the entire rows.

If the use case is simply that your users want (and need) all of the data, then you can simply give it to them:

GET /query/12345?all=true

and just send the whole kit.


(Default sort of foos is by creation date, so row insertion is not a problem.)
Actually, capturing only document keys is not enough. This way you'll have to query the full objects by ID when the user requests them, but it might be that they do not longer exist.
M
Mohd Iftekhar Qurashi

There may be two approaches depending on your server side logic.

Approach 1: When server is not smart enough to handle object states.

You could send all cached record unique id’s to server, for example ["id1","id2","id3","id4","id5","id6","id7","id8","id9","id10"] and a boolean parameter to know whether you are requesting new records(pull to refresh) or old records(load more).

Your sever should responsible to return new records(load more records or new records via pull to refresh) as well as id’s of deleted records from ["id1","id2","id3","id4","id5","id6","id7","id8","id9","id10"].

Example:- If you are requesting load more then your request should look something like this:-

{
        "isRefresh" : false,
        "cached" : ["id1","id2","id3","id4","id5","id6","id7","id8","id9","id10"]
}

Now suppose you are requesting old records(load more) and suppose "id2" record is updated by someone and "id5" and "id8" records is deleted from server then your server response should look something like this:-

{
        "records" : [
{"id" :"id2","more_key":"updated_value"},
{"id" :"id11","more_key":"more_value"},
{"id" :"id12","more_key":"more_value"},
{"id" :"id13","more_key":"more_value"},
{"id" :"id14","more_key":"more_value"},
{"id" :"id15","more_key":"more_value"},
{"id" :"id16","more_key":"more_value"},
{"id" :"id17","more_key":"more_value"},
{"id" :"id18","more_key":"more_value"},
{"id" :"id19","more_key":"more_value"},
{"id" :"id20","more_key":"more_value"}],
        "deleted" : ["id5","id8"]
}

But in this case if you’ve a lot of local cached records suppose 500, then your request string will be too long like this:-

{
        "isRefresh" : false,
        "cached" : ["id1","id2","id3","id4","id5","id6","id7","id8","id9","id10",………,"id500"]//Too long request
}

Approach 2: When server is smart enough to handle object states according to date.

You could send the id of first record and the last record and previous request epoch time. In this way your request is always small even if you’ve a big amount of cached records

Example:- If you are requesting load more then your request should look something like this:-

{
        "isRefresh" : false,
        "firstId" : "id1",
        "lastId" : "id10",
        "last_request_time" : 1421748005
}

Your server is responsible to return the id’s of deleted records which is deleted after the last_request_time as well as return the updated record after last_request_time between "id1" and "id10" .

{
        "records" : [
{"id" :"id2","more_key":"updated_value"},
{"id" :"id11","more_key":"more_value"},
{"id" :"id12","more_key":"more_value"},
{"id" :"id13","more_key":"more_value"},
{"id" :"id14","more_key":"more_value"},
{"id" :"id15","more_key":"more_value"},
{"id" :"id16","more_key":"more_value"},
{"id" :"id17","more_key":"more_value"},
{"id" :"id18","more_key":"more_value"},
{"id" :"id19","more_key":"more_value"},
{"id" :"id20","more_key":"more_value"}],
        "deleted" : ["id5","id8"]
}

Pull To Refresh:-

https://i.stack.imgur.com/AEGIh.jpg

Load More

https://i.stack.imgur.com/0YD1y.jpg


B
Brent Baisley

It may be tough to find best practices since most systems with APIs don't accommodate for this scenario, because it is an extreme edge, or they don't typically delete records (Facebook, Twitter). Facebook actually says each "page" may not have the number of results requested due to filtering done after pagination. https://developers.facebook.com/blog/post/478/

If you really need to accommodate this edge case, you need to "remember" where you left off. jandjorgensen suggestion is just about spot on, but I would use a field guaranteed to be unique like the primary key. You may need to use more than one field.

Following Facebook's flow, you can (and should) cache the pages already requested and just return those with deleted rows filtered if they request a page they had already requested.


This is not an acceptable solution. It is considerably time and memory consuming. All the deleted data along with requested data will need to be kept in memory which might not be used at all if the same user doesn't request any more entries.
I disagree. Just keeping the unique IDs does not use much memory at all. You don't to retain the data indefinitely, just for the "session". This is easy with memcache, just set the expire duration (i.e. 10 minutes).
memory is cheaper than network/CPU speed. So if creating a page is very expensive (in terms of network or is CPU intensive), then caching results is a valid approach @DeepakGarg
p
phauer

Option A: Keyset Pagination with a Timestamp

In order to avoid the drawbacks of offset pagination you have mentioned, you can use keyset based pagination. Usually, the entities have a timestamp that states their creation or modification time. This timestamp can be used for pagination: Just pass the timestamp of the last element as the query parameter for the next request. The server, in turn, uses the timestamp as a filter criterion (e.g. WHERE modificationDate >= receivedTimestampParameter)

{
    "elements": [
        {"data": "data", "modificationDate": 1512757070}
        {"data": "data", "modificationDate": 1512757071}
        {"data": "data", "modificationDate": 1512757072}
    ],
    "pagination": {
        "lastModificationDate": 1512757072,
        "nextPage": "https://domain.de/api/elements?modifiedSince=1512757072"
    }
}

This way, you won't miss any element. This approach should be good enough for many use cases. However, keep the following in mind:

You may run into endless loops when all elements of a single page have the same timestamp.

You may deliver many elements multiple times to the client when elements with the same timestamp are overlapping two pages.

You can make those drawbacks less likely by increasing the page size and using timestamps with millisecond precision.

Option B: Extended Keyset Pagination with a Continuation Token

To handle the mentioned drawbacks of the normal keyset pagination, you can add an offset to the timestamp and use a so-called "Continuation Token" or "Cursor". The offset is the position of the element relative to the first element with the same timestamp. Usually, the token has a format like Timestamp_Offset. It's passed to the client in the response and can be submitted back to the server in order to retrieve the next page.

{
    "elements": [
        {"data": "data", "modificationDate": 1512757070}
        {"data": "data", "modificationDate": 1512757072}
        {"data": "data", "modificationDate": 1512757072}
    ],
    "pagination": {
        "continuationToken": "1512757072_2",
        "nextPage": "https://domain.de/api/elements?continuationToken=1512757072_2"
    }
}

The token "1512757072_2" points to the last element of the page and states "the client already got the second element with the timestamp 1512757072". This way, the server knows where to continue.

Please mind that you have to handle cases where the elements got changed between two requests. This is usually done by adding a checksum to the token. This checksum is calculated over the IDs of all elements with this timestamp. So we end up with a token format like this: Timestamp_Offset_Checksum.

For more information about this approach check out the blog post "Web API Pagination with Continuation Tokens". A drawback of this approach is the tricky implementation as there are many corner cases that have to be taken into account. That's why libraries like continuation-token can be handy (if you are using Java/a JVM language). Disclaimer: I'm the author of the post and a co-author of the library.


A
Archimedes Trajano

Pagination is generally a "user" operation and to prevent overload both on computers and the human brain you generally give a subset. However, rather than thinking that we don't get the whole list it may be better to ask does it matter?

If an accurate live scrolling view is needed, REST APIs which are request/response in nature are not well suited for this purpose. For this you should consider WebSockets or HTML5 Server-Sent Events to let your front end know when dealing with changes.

Now if there's a need to get a snapshot of the data, I would just provide an API call that provides all the data in one request with no pagination. Mind you, you would need something that would do streaming of the output without temporarily loading it in memory if you have a large data set.

For my case I implicitly designate some API calls to allow getting the whole information (primarily reference table data). You can also secure these APIs so it won't harm your system.


C
Community

Just to add to this answer by Kamilk : https://www.stackoverflow.com/a/13905589

Depends a lot on how large dataset you are working on. Small data sets do work on effectively on offset pagination but large realtime datasets do require cursor pagination. Found a wonderful article on how Slack evolved its api's pagination as there datasets increased explaining the positives and negatives at every stage : https://slack.engineering/evolving-api-pagination-at-slack-1c1f644f8e12


m
mickeymoon

I think currently your api's actually responding the way it should. The first 100 records on the page in the overall order of objects you are maintaining. Your explanation tells that you are using some kind of ordering ids to define the order of your objects for pagination.

Now, in case you want that page 2 should always start from 101 and end at 200, then you must make the number of entries on the page as variable, since they are subject to deletion.

You should do something like the below pseudocode:

page_max = 100
def get_page_results(page_no) :

    start = (page_no - 1) * page_max + 1
    end = page_no * page_max

    return fetch_results_by_id_between(start, end)

I agree. rather than query by record number (which is not reliable) you should query by ID. Change your query(x, m) to mean "return up to m records SORTED by ID, with ID > x", then you can simply set x to the maximum id from the previous query result.
True, either sort on ids or if you have some concrete business field to sort on like creation_date etc.
S
Stijn de Witt

I've thought long and hard about this and finally ended up with the solution I'll describe below. It's a pretty big step up in complexity but if you do make this step, you'll end up with what you are really after, which is deterministic results for future requests.

Your example of an item being deleted is only the tip of the iceberg. What if you are filtering by color=blue but someone changes item colors in between requests? Fetching all items in a paged manner reliably is impossible... unless... we implement revision history.

I've implemented it and it's actually less difficult than I expected. Here's what I did:

I created a single table changelogs with an auto-increment ID column

My entities have an id field, but this is not the primary key

The entities have a changeId field which is both the primary key as well as a foreign key to changelogs.

Whenever a user creates, updates or deletes a record, the system inserts a new record in changelogs, grabs the id and assigns it to a new version of the entity, which it then inserts in the DB

My queries select the maximum changeId (grouped by id) and self-join that to get the most recent versions of all records.

Filters are applied to the most recent records

A state field keeps track of whether an item is deleted

The max changeId is returned to the client and added as a query parameter in subsequent requests

Because only new changes are created, every single changeId represents a unique snapshot of the underlying data at the moment the change was created.

This means that you can cache the results of requests that have the parameter changeId in them forever. The results will never expire because they will never change.

This also opens up exciting feature such as rollback / revert, synching client cache etc. Any features that benefit from change history.


i'm confused. How this solve the use case you mentioned? (A random field changes in the cache and you want to invalidate the cache)
For any changes you make yourself, you just look at the response. The server will provide a new changeId and you use that in your next request. For other changes (made by other people), you either poll the latest changeId every once in a while and if it's higher than your own, you know there are outstanding changes. Or you set up some notification system (long polling. server push, websockets) that alerts the client when there are outstanding changes.
C
Community

Another option for Pagination in RESTFul APIs, is to use the Link header introduced here. For example Github use it as follow:

Link: <https://api.github.com/user/repos?page=3&per_page=100>; rel="next",
  <https://api.github.com/user/repos?page=50&per_page=100>; rel="last"

The possible values for rel are: first, last, next, previous. But by using Link header, it may be not possible to specify total_count (total number of elements).


this is the perfect solution and should be an acceptable answer.
z
zangw

Refer to API Pagination Design, we could design pagination api through cursor

They have this concept, called cursor — it’s a pointer to a row. So you can say to a database “return me 100 rows after that one”. And it’s much easier for a database to do since there is a good chance that you’ll identify the row by a field with an index. And suddenly you don’t need to fetch and skip those rows, you’ll go directly past them. An example:

  GET /api/products
  {"items": [...100 products],
   "cursor": "qWe"}

API returns an (opaque) string, which you can use then to retrieve the next page:

GET /api/products?cursor=qWe
{"items": [...100 products],
 "cursor": "qWr"}

Implementation-wise there are many options. Generally, you have some ordering criteria, for example, product id. In this case, you’ll encode your product id with some reversible algorithm (let’s say hashids). And on receiving a request with the cursor you decode it and generate a query like WHERE id > :cursor LIMIT 100.

Advantage:

The query performance of db could be improved through cursor

Handle well when new content was inserted into db while querying

Disadvantage:

It’s impossible to generate a previous page link with a stateless API


关注公众号,不定期副业成功案例分享
Follow WeChat

Success story sharing

Want to stay one step ahead of the latest teleworks?

Subscribe Now