I want to create a function that performs a function passed by parameter on a set of data. How do you pass a function as a parameter in C?
typedef
.
void funcA(void(*funcB)(int))
and void (*funcA())()
to typedef void funcB(); void funcA(funcB)
and funcB funcA()
? I dont see the upside.
qsort
and bsearch
for examples of how this is done.
Declaration
A prototype for a function which takes a function parameter looks like the following:
void func ( void (*f)(int) );
This states that the parameter f
will be a pointer to a function which has a void
return type and which takes a single int
parameter. The following function (print
) is an example of a function which could be passed to func
as a parameter because it is the proper type:
void print ( int x ) {
printf("%d\n", x);
}
Function Call
When calling a function with a function parameter, the value passed must be a pointer to a function. Use the function's name (without parentheses) for this:
func(print);
would call func
, passing the print function to it.
Function Body
As with any parameter, func
can now use the parameter's name in the function body to access the value of the parameter. Let's say that func
will apply the function it is passed to the numbers 0-4. Consider, first, what the loop would look like to call print directly:
for ( int ctr = 0 ; ctr < 5 ; ctr++ ) {
print(ctr);
}
Since func
's parameter declaration says that f
is the name for a pointer to the desired function, we recall first that if f
is a pointer then *f
is the thing that f
points to (i.e. the function print
in this case). As a result, just replace every occurrence of print in the loop above with *f
:
void func ( void (*f)(int) ) {
for ( int ctr = 0 ; ctr < 5 ; ctr++ ) {
(*f)(ctr);
}
}
This question already has the answer for defining function pointers, however they can get very messy, especially if you are going to be passing them around your application. To avoid this unpleasantness I would recommend that you typedef the function pointer into something more readable. For example.
typedef void (*functiontype)();
Declares a function that returns void and takes no arguments. To create a function pointer to this type you can now do:
void dosomething() { }
functiontype func = &dosomething;
func();
For a function that returns an int and takes a char you would do
typedef int (*functiontype2)(char);
and to use it
int dosomethingwithchar(char a) { return 1; }
functiontype2 func2 = &dosomethingwithchar
int result = func2('a');
There are libraries that can help with turning function pointers into nice readable types. The boost function library is great and is well worth the effort!
boost::function<int (char a)> functiontype2;
is so much nicer than the above.
typedef
; it's simpler and doesn't require any extra libraries.
typedef void(__stdcall* funcPtr)(int arg1, int arg2);
Since C++11 you can use the functional library to do this in a succinct and generic fashion. The syntax is, e.g.,
std::function<bool (int)>
where bool
is the return type here of a one-argument function whose first argument is of type int
.
I have included an example program below:
// g++ test.cpp --std=c++11
#include <functional>
double Combiner(double a, double b, std::function<double (double,double)> func){
return func(a,b);
}
double Add(double a, double b){
return a+b;
}
double Mult(double a, double b){
return a*b;
}
int main(){
Combiner(12,13,Add);
Combiner(12,13,Mult);
}
Sometimes, though, it is more convenient to use a template function:
// g++ test.cpp --std=c++11
template<class T>
double Combiner(double a, double b, T func){
return func(a,b);
}
double Add(double a, double b){
return a+b;
}
double Mult(double a, double b){
return a*b;
}
int main(){
Combiner(12,13,Add);
Combiner(12,13,Mult);
}
Pass address of a function as parameter to another function as shown below
#include <stdio.h>
void print();
void execute(void());
int main()
{
execute(print); // sends address of print
return 0;
}
void print()
{
printf("Hello!");
}
void execute(void f()) // receive address of print
{
f();
}
Also we can pass function as parameter using function pointer
#include <stdio.h>
void print();
void execute(void (*f)());
int main()
{
execute(&print); // sends address of print
return 0;
}
void print()
{
printf("Hello!");
}
void execute(void (*f)()) // receive address of print
{
f();
}
Functions can be "passed" as function pointers, as per ISO C11 6.7.6.3p8: "A declaration of a parameter as ‘‘function returning type’’ shall be adjusted to ‘‘pointer to function returning type’’, as in 6.3.2.1. ". For example, this:
void foo(int bar(int, int));
is equivalent to this:
void foo(int (*bar)(int, int));
You need to pass a function pointer. The syntax is a little cumbersome, but it's really powerful once you get familiar with it.
I am gonna explain with a simple example code which takes a compare
function as parameter to another sorting
function. Lets say I have a bubble sort function that takes a custom compare function and uses it instead of a fixed if statement.
Compare Function
bool compare(int a, int b) {
return a > b;
}
Now , the Bubble sort that takes another function as its parameter to perform comparison
Bubble sort function
void bubble_sort(int arr[], int n, bool (&cmp)(int a, int b)) {
for (int i = 0;i < n - 1;i++) {
for (int j = 0;j < (n - 1 - i);j++) {
if (cmp(arr[j], arr[j + 1])) {
swap(arr[j], arr[j + 1]);
}
}
}
}
Finally , the main
which calls the Bubble sort function by passing the boolean compare function as argument.
int main()
{
int i, n = 10, key = 11;
int arr[10] = { 20, 22, 18, 8, 12, 3, 6, 12, 11, 15 };
bubble_sort(arr, n, compare);
cout<<"Sorted Order"<<endl;
for (int i = 0;i < n;i++) {
cout << arr[i] << " ";
}
}
Output:
Sorted Order
3 6 8 11 12 12 15 18 20 22
typedef int function();
function *g(function *f)
{
f();
return f;
}
int main(void)
{
function f;
function *fn = g(f);
fn();
}
int f() { return 0; }
It's not really a function, but it is an localised piece of code. Of course it doesn't pass the code just the result. It won't work if passed to an event dispatcher to be run at a later time (as the result is calculated now and not when the event occurs). But it does localise your code into one place if that is all you are trying to do.
#include <stdio.h>
int IncMultInt(int a, int b)
{
a++;
return a * b;
}
int main(int argc, char *argv[])
{
int a = 5;
int b = 7;
printf("%d * %d = %d\n", a, b, IncMultInt(a, b));
b = 9;
// Create some local code with it's own local variable
printf("%d * %d = %d\n", a, b, ( { int _a = a+1; _a * b; } ) );
return 0;
}
IncMultInt
?
Success story sharing
f
function call can takef
just as is without *. It might be a good idea to do it as you do though, to make it obvious that parameter f is a function pointer. But it hurts readability quite often.typedef
for function pointers? Sorry, have to down-vote.