ChatGPT解决这个技术问题 Extra ChatGPT

Apply multiple functions to multiple groupby columns

The docs show how to apply multiple functions on a groupby object at a time using a dict with the output column names as the keys:

In [563]: grouped['D'].agg({'result1' : np.sum,
   .....:                   'result2' : np.mean})
   .....:
Out[563]: 
      result2   result1
A                      
bar -0.579846 -1.739537
foo -0.280588 -1.402938

However, this only works on a Series groupby object. And when a dict is similarly passed to a groupby DataFrame, it expects the keys to be the column names that the function will be applied to.

What I want to do is apply multiple functions to several columns (but certain columns will be operated on multiple times). Also, some functions will depend on other columns in the groupby object (like sumif functions). My current solution is to go column by column, and doing something like the code above, using lambdas for functions that depend on other rows. But this is taking a long time, (I think it takes a long time to iterate through a groupby object). I'll have to change it so that I iterate through the whole groupby object in a single run, but I'm wondering if there's a built in way in pandas to do this somewhat cleanly.

For example, I've tried something like

grouped.agg({'C_sum' : lambda x: x['C'].sum(),
             'C_std': lambda x: x['C'].std(),
             'D_sum' : lambda x: x['D'].sum()},
             'D_sumifC3': lambda x: x['D'][x['C'] == 3].sum(), ...)

but as expected I get a KeyError (since the keys have to be a column if agg is called from a DataFrame).

Is there any built in way to do what I'd like to do, or a possibility that this functionality may be added, or will I just need to iterate through the groupby manually?

If you are coming to this question in 2017+, please see the answer below to see the idiomatic way to aggregate multiple columns together. The currently selected answer has multiple deprecations in it, namely that you cannot use a dictionary of dictionaries anymore to rename columns in the result of a groupby.

J
JejeBelfort

The second half of the currently accepted answer is outdated and has two deprecations. First and most important, you can no longer pass a dictionary of dictionaries to the agg groupby method. Second, never use .ix.

If you desire to work with two separate columns at the same time I would suggest using the apply method which implicitly passes a DataFrame to the applied function. Let's use a similar dataframe as the one from above

df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
df

          a         b         c         d  group
0  0.418500  0.030955  0.874869  0.145641      0
1  0.446069  0.901153  0.095052  0.487040      0
2  0.843026  0.936169  0.926090  0.041722      1
3  0.635846  0.439175  0.828787  0.714123      1

A dictionary mapped from column names to aggregation functions is still a perfectly good way to perform an aggregation.

df.groupby('group').agg({'a':['sum', 'max'], 
                         'b':'mean', 
                         'c':'sum', 
                         'd': lambda x: x.max() - x.min()})

              a                   b         c         d
            sum       max      mean       sum  <lambda>
group                                                  
0      0.864569  0.446069  0.466054  0.969921  0.341399
1      1.478872  0.843026  0.687672  1.754877  0.672401

If you don't like that ugly lambda column name, you can use a normal function and supply a custom name to the special __name__ attribute like this:

def max_min(x):
    return x.max() - x.min()

max_min.__name__ = 'Max minus Min'

df.groupby('group').agg({'a':['sum', 'max'], 
                         'b':'mean', 
                         'c':'sum', 
                         'd': max_min})

              a                   b         c             d
            sum       max      mean       sum Max minus Min
group                                                      
0      0.864569  0.446069  0.466054  0.969921      0.341399
1      1.478872  0.843026  0.687672  1.754877      0.672401

Using apply and returning a Series

Now, if you had multiple columns that needed to interact together then you cannot use agg, which implicitly passes a Series to the aggregating function. When using apply the entire group as a DataFrame gets passed into the function.

I recommend making a single custom function that returns a Series of all the aggregations. Use the Series index as labels for the new columns:

def f(x):
    d = {}
    d['a_sum'] = x['a'].sum()
    d['a_max'] = x['a'].max()
    d['b_mean'] = x['b'].mean()
    d['c_d_prodsum'] = (x['c'] * x['d']).sum()
    return pd.Series(d, index=['a_sum', 'a_max', 'b_mean', 'c_d_prodsum'])

df.groupby('group').apply(f)

         a_sum     a_max    b_mean  c_d_prodsum
group                                           
0      0.864569  0.446069  0.466054     0.173711
1      1.478872  0.843026  0.687672     0.630494

If you are in love with MultiIndexes, you can still return a Series with one like this:

    def f_mi(x):
        d = []
        d.append(x['a'].sum())
        d.append(x['a'].max())
        d.append(x['b'].mean())
        d.append((x['c'] * x['d']).sum())
        return pd.Series(d, index=[['a', 'a', 'b', 'c_d'], 
                                   ['sum', 'max', 'mean', 'prodsum']])

df.groupby('group').apply(f_mi)

              a                   b       c_d
            sum       max      mean   prodsum
group                                        
0      0.864569  0.446069  0.466054  0.173711
1      1.478872  0.843026  0.687672  0.630494

this is the only way I've found to aggregate a dataframe via multiple column inputs simulatneosly (the c_d example above)
@slackline yes. i just tested it and it works fine. Ted must have just created the frame a few different times and since it was created via random number generation, the df data to actually generate the data was different than the one ultimately used in the calculations
On large dataframes, this is very slow. What are ideas for more efficient solutions?
indeed a the neatest way, in Python, in R data.table package easily beat it in terms of shorter syntax and faster speed all you do is just $$df[,.(sum(a),min(a),max(a),sum(c*d)),keyby=.(group)]$$
@JejeBelfort "second half of the currently accepted answer is outdated" - this is not referring to this Answer, right?
R
RK1

For the first part you can pass a dict of column names for keys and a list of functions for the values:

In [28]: df
Out[28]:
          A         B         C         D         E  GRP
0  0.395670  0.219560  0.600644  0.613445  0.242893    0
1  0.323911  0.464584  0.107215  0.204072  0.927325    0
2  0.321358  0.076037  0.166946  0.439661  0.914612    1
3  0.133466  0.447946  0.014815  0.130781  0.268290    1

In [26]: f = {'A':['sum','mean'], 'B':['prod']}

In [27]: df.groupby('GRP').agg(f)
Out[27]:
            A                   B
          sum      mean      prod
GRP
0    0.719580  0.359790  0.102004
1    0.454824  0.227412  0.034060

UPDATE 1:

Because the aggregate function works on Series, references to the other column names are lost. To get around this, you can reference the full dataframe and index it using the group indices within the lambda function.

Here's a hacky workaround:

In [67]: f = {'A':['sum','mean'], 'B':['prod'], 'D': lambda g: df.loc[g.index].E.sum()}

In [69]: df.groupby('GRP').agg(f)
Out[69]:
            A                   B         D
          sum      mean      prod  <lambda>
GRP
0    0.719580  0.359790  0.102004  1.170219
1    0.454824  0.227412  0.034060  1.182901

Here, the resultant 'D' column is made up of the summed 'E' values.

UPDATE 2:

Here's a method that I think will do everything you ask. First make a custom lambda function. Below, g references the group. When aggregating, g will be a Series. Passing g.index to df.ix[] selects the current group from df. I then test if column C is less than 0.5. The returned boolean series is passed to g[] which selects only those rows meeting the criteria.

In [95]: cust = lambda g: g[df.loc[g.index]['C'] < 0.5].sum()

In [96]: f = {'A':['sum','mean'], 'B':['prod'], 'D': {'my name': cust}}

In [97]: df.groupby('GRP').agg(f)
Out[97]:
            A                   B         D
          sum      mean      prod   my name
GRP
0    0.719580  0.359790  0.102004  0.204072
1    0.454824  0.227412  0.034060  0.570441

Interesting, I can also pass a dict of {funcname: func} as values instead of lists to keep my custom names. But in either case I can't pass a lambda that uses other columns (like lambda x: x['D'][x['C'] < 3].sum() above: "KeyError: 'D'"). Any idea if that's possible?
I've been trying to do exactly that, and I get the error KeyError: 'D'
Cool, I got it to work with df['A'].ix[g.index][df['C'] < 0].sum(). This is starting to get pretty messy, though--I think for readability manual looping may be preferable, plus I'm not sure there's a way to give it my preferred name in the agg argument (instead of <lambda>). I'll hold out hope that someone may know a more straightforward way...
You can pass a dict for the column value {'D': {'my name':lambda function}} and it will make the inner dict key the column name.
I believe that pandas now supports multiple functions applied to a grouped-by dataframe: pandas.pydata.org/pandas-docs/stable/…
E
Erfan

Pandas >= 0.25.0, named aggregations

Since pandas version 0.25.0 or higher, we are moving away from the dictionary based aggregation and renaming, and moving towards named aggregations which accepts a tuple. Now we can simultaneously aggregate + rename to a more informative column name:

Example:

df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]

          a         b         c         d  group
0  0.521279  0.914988  0.054057  0.125668      0
1  0.426058  0.828890  0.784093  0.446211      0
2  0.363136  0.843751  0.184967  0.467351      1
3  0.241012  0.470053  0.358018  0.525032      1

Apply GroupBy.agg with named aggregation:

df.groupby('group').agg(
             a_sum=('a', 'sum'),
             a_mean=('a', 'mean'),
             b_mean=('b', 'mean'),
             c_sum=('c', 'sum'),
             d_range=('d', lambda x: x.max() - x.min())
)

          a_sum    a_mean    b_mean     c_sum   d_range
group                                                  
0      0.947337  0.473668  0.871939  0.838150  0.320543
1      0.604149  0.302074  0.656902  0.542985  0.057681

I like these named aggregations but I could not see how we are supposed to use them with multiple columns?
Good question, could not figure this out, doubt this is possible (yet). I opened a ticket for this. Will keep my question and you updated. Thanks for pointing out @SimonWoodhead
any progress on doing this with multiple columns?? i.e. (['a', 'b'], 'sum')
@DerekEden have you found out?
@mihagazvoda no sorry
r
r2evans

As an alternative (mostly on aesthetics) to Ted Petrou's answer, I found I preferred a slightly more compact listing. Please don't consider accepting it, it's just a much-more-detailed comment on Ted's answer, plus code/data. Python/pandas is not my first/best, but I found this to read well:

df.groupby('group') \
  .apply(lambda x: pd.Series({
      'a_sum'       : x['a'].sum(),
      'a_max'       : x['a'].max(),
      'b_mean'      : x['b'].mean(),
      'c_d_prodsum' : (x['c'] * x['d']).sum()
  })
)

          a_sum     a_max    b_mean  c_d_prodsum
group                                           
0      0.530559  0.374540  0.553354     0.488525
1      1.433558  0.832443  0.460206     0.053313

I find it more reminiscent of dplyr pipes and data.table chained commands. Not to say they're better, just more familiar to me. (I certainly recognize the power and, for many, the preference of using more formalized def functions for these types of operations. This is just an alternative, not necessarily better.)

I generated data in the same manner as Ted, I'll add a seed for reproducibility.

import numpy as np
np.random.seed(42)
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
df

          a         b         c         d  group
0  0.374540  0.950714  0.731994  0.598658      0
1  0.156019  0.155995  0.058084  0.866176      0
2  0.601115  0.708073  0.020584  0.969910      1
3  0.832443  0.212339  0.181825  0.183405      1

I like this answer the most. This is similar to dplyr pipes in R.
To make this complete like Ted Petrou's answer: if you want multi-indexes you can specify tuples as the keys for the dictionary that you feed into pd.Series. For example, ('a', 'sum') : x['a'].sum() instead of 'a_sum' : x['a'].sum()
J
Jaroslav Bezděk

New in version 0.25.0.

To support column-specific aggregation with control over the output column names, pandas accepts the special syntax in GroupBy.agg(), known as “named aggregation”, where

The keywords are the output column names

The values are tuples whose first element is the column to select and the second element is the aggregation to apply to that column. Pandas provides the pandas.NamedAgg namedtuple with the fields ['column', 'aggfunc'] to make it clearer what the arguments are. As usual, the aggregation can be a callable or a string alias.

>>> animals = pd.DataFrame({
...     'kind': ['cat', 'dog', 'cat', 'dog'],
...     'height': [9.1, 6.0, 9.5, 34.0],
...     'weight': [7.9, 7.5, 9.9, 198.0]
... })

>>> print(animals)
  kind  height  weight
0  cat     9.1     7.9
1  dog     6.0     7.5
2  cat     9.5     9.9
3  dog    34.0   198.0

>>> print(
...     animals
...     .groupby('kind')
...     .agg(
...         min_height=pd.NamedAgg(column='height', aggfunc='min'),
...         max_height=pd.NamedAgg(column='height', aggfunc='max'),
...         average_weight=pd.NamedAgg(column='weight', aggfunc=np.mean),
...     )
... )
      min_height  max_height  average_weight
kind                                        
cat          9.1         9.5            8.90
dog          6.0        34.0          102.75

pandas.NamedAgg is just a namedtuple. Plain tuples are allowed as well.

>>> print(
...     animals
...     .groupby('kind')
...     .agg(
...         min_height=('height', 'min'),
...         max_height=('height', 'max'),
...         average_weight=('weight', np.mean),
...     )
... )
      min_height  max_height  average_weight
kind                                        
cat          9.1         9.5            8.90
dog          6.0        34.0          102.75

Additional keyword arguments are not passed through to the aggregation functions. Only pairs of (column, aggfunc) should be passed as **kwargs. If your aggregation functions requires additional arguments, partially apply them with functools.partial().

Named aggregation is also valid for Series groupby aggregations. In this case there’s no column selection, so the values are just the functions.

>>> print(
...     animals
...     .groupby('kind')
...     .height
...     .agg(
...         min_height='min',
...         max_height='max',
...     )
... )
      min_height  max_height
kind                        
cat          9.1         9.5
dog          6.0        34.0

My next comment is a tip showing how to use a dictionary of named aggs. I can't seem to format the code nicely in the comment though, so I've also created an answer down below.
agg_dict = { "min_height": pd.NamedAgg(column='height', aggfunc='min'), "max_height": pd.NamedAgg(column='height', aggfunc='max'), "average_weight": pd.NamedAgg(column='weight', aggfunc=np.mean) } animals.groupby("kind").agg(**agg_dict)
M
Mint

This is a twist on 'exans' answer that uses Named Aggregations. It's the same but with argument unpacking which allows you to still pass in a dictionary to the agg function.

The named aggs are a nice feature, but at first glance might seem hard to write programmatically since they use keywords, but it's actually simple with argument/keyword unpacking.

animals = pd.DataFrame({'kind': ['cat', 'dog', 'cat', 'dog'],
                         'height': [9.1, 6.0, 9.5, 34.0],
                         'weight': [7.9, 7.5, 9.9, 198.0]})
 
agg_dict = {
    "min_height": pd.NamedAgg(column='height', aggfunc='min'),
    "max_height": pd.NamedAgg(column='height', aggfunc='max'),
    "average_weight": pd.NamedAgg(column='weight', aggfunc=np.mean)
}

animals.groupby("kind").agg(**agg_dict)

The Result

      min_height  max_height  average_weight
kind                                        
cat          9.1         9.5            8.90
dog          6.0        34.0          102.75

J
Jaroslav Bezděk

Ted's answer is amazing. I ended up using a smaller version of that in case anyone is interested. Useful when you are looking for one aggregation that depends on values from multiple columns:

create a dataframe

df = pd.DataFrame({
    'a': [1, 2, 3, 4, 5, 6], 
    'b': [1, 1, 0, 1, 1, 0], 
    'c': ['x', 'x', 'y', 'y', 'z', 'z']
})

print(df)
   a  b  c
0  1  1  x
1  2  1  x
2  3  0  y
3  4  1  y
4  5  1  z
5  6  0  z

grouping and aggregating with apply (using multiple columns)

print(
    df
    .groupby('c')
    .apply(lambda x: x['a'][(x['a'] > 1) & (x['b'] == 1)]
    .mean()
)
c
x    2.0
y    4.0
z    5.0

grouping and aggregating with aggregate (using multiple columns)

I like this approach since I can still use aggregate. Perhaps people will let me know why apply is needed for getting at multiple columns when doing aggregations on groups.

It seems obvious now, but as long as you don't select the column of interest directly after the groupby, you will have access to all the columns of the dataframe from within your aggregation function.

only access to the selected column

df.groupby('c')['a'].aggregate(lambda x: x[x > 1].mean())

access to all columns since selection is after all the magic

df.groupby('c').aggregate(lambda x: x[(x['a'] > 1) & (x['b'] == 1)].mean())['a']

or similarly

df.groupby('c').aggregate(lambda x: x['a'][(x['a'] > 1) & (x['b'] == 1)].mean())

I hope this helps.